
CA-IDMS®
DBOMP Transparency

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to use this Manual . vii

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-1
1.1 Functions and modules . 1-4

1.1.1 Functions . 1-4
1.1.2 Modules . 1-5

1.2 Data description guidelines . 1-7
1.3 Programming requirements . 1-8
1.4 Installation . 1-9

Chapter 2. The Transparency Environment 2-1
2.1 Overview . 2-3
2.2 DBOMP macros supported . 2-4

2.2.1 Macros supported unconditionally . 2-4
2.2.2 Macros that require program modification and reassembly 2-4
2.2.3 Macros not supported . 2-5
2.2.4 Macros processed independently of the transparency 2-6

2.3 DBOMP process indicators supported . 2-7
2.3.1 Process indicators fully supported . 2-7
2.3.2 Process indicators supported with exceptions 2-7
2.3.3 Process indicators not supported . 2-8

2.4 DBOMP routines supported . 2-9
2.5 CA-IDMS DML statements supported in bridged programs 2-10
2.6 How to include CA-IDMS DML statements 2-11

Chapter 3. Transparency Programs and Macros 3-1
3.1 IMBS customizing macro . 3-4

3.1.1 Control statement . 3-4
3.1.2 Set identification statement . 3-6
3.1.3 File/record type description statement 3-7
3.1.4 Pointer/set relationship statement . 3-8
3.1.5 Delimiter statement . 3-8

3.2 Output from IMBS macro — IMBSTAB . 3-9
3.2.1 IMBSTAB error messages . 3-12

3.3 Sample IMBS and IMBSTAB . 3-14
3.4 IMBSPROC database procedure . 3-19
3.5 IMBSBRDG program module . 3-21

3.5.1 Converting DBOMP calls to CA-IDMS/DB statements 3-21
3.5.2 Converting records retrieved from CA-IDMS/DB 3-23

Contents iii

3.6 IMBSEQ macro . 3-28

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-1
4.1 Converting data . 4-4
4.2 Converting DBOMP load and maintenance programs 4-7

4.2.1 DBOMP process indicators and corresponding DML 4-8
4.2.2 DBOMP commands and corresponding DML 4-12
4.2.3 Sequence of logic in converted programs 4-14

4.3 Converting DBOMP retrieval and update programs 4-16
4.4 DBOMP error codes that have CA-IDMS/DB equivalents 4-17

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-1
5.1 Preparing DBOMP Assembler programs . 5-4
5.2 Executing DBOMP Assembler programs . 5-5

5.2.1 Assembling and executing under OS/390 5-5
5.2.2 Assembling and executing under VSE/ESA 5-8

5.3 Diagnosing errors . 5-11
5.3.1 What to look for when errors occur during program processing . . . 5-11
5.3.2 What to look for when inaccurate data is returned 5-12
5.3.3 Where to find values during debugging 5-12

Appendix A. PL/I Considerations . A-1
A.1 Transparency support for DBOMP PL/I commands A-4
A.2 IMBSPL1 interface macro . A-6
A.3 DBOMP PL/I program preparation and execution A-7

Appendix B. COBOL Considerations . B-1
B.1 Transparency support for DBOMP COBOL commands B-4
B.2 IMBSCOBL interface macro . B-7
B.3 DBOMP COBOL program preparation and execution B-8

Appendix C. Sample Application and Procedures C-1
C.1 IMBSBILL sample application . C-4
C.2 IMBSMJ01 sample OS/390 JCL . C-6
C.3 IMBSMJ02 sample OS/390 JCL . C-7

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 . D-1
D.1 Customizing and executing IMBSMJ01 and IMBSMJ02 D-5

D.1.1 Explanation of EXEC statements in IMBSMJ01 procedure D-5
D.1.2 Customizing IMBSMJ01 . D-6
D.1.3 Explanation of EXEC statements in IMBSMJ02 procedure D-8
D.1.4 Customizing IMBSMJ02 . D-8
D.1.5 Executing IMBSMJ01 and IMBSMJ02 D-9

Appendix E. Setting Up CA-IDMS/DBOMP Transparency under VSE/ESA E-1
E.1 Customizing and executing IMBSVJ01 and IMBSVJ02 E-3

E.1.1 Explanation of EXEC statements in IMBSVJ01 procedure E-3
E.1.2 Explanation of EXEC statements in IMBSVJ02 procedure E-4

E.2 Running IMBSVJ01 . E-6
E.3 Running IMBSVJ02 . E-7

iv CA-IDMS DBOMP Transparency

Index . X-1

Contents v

vi CA-IDMS DBOMP Transparency

How to use this Manual

How to use this Manual vii

What this manual is about

This manual provides instruction on:

■ Executing DBOMP application programs with CA-IDMS/DBOMP Transparency

■ Converting DBOMP data and programs to CA-IDMS/DB

viii CA-IDMS DBOMP Transparency

Who should use this manual

This manual is intended for:

■ Database administrators who are converting DBOMP databases to CA-IDMS/DB
databases

■ Application programmers who are using existing DBOMP application programs to
access CA-IDMS/DB databases

How to use this Manual ix

How information is presented

This manual contains the following:

■ Introduction to CA-IDMS/DBOMP Transparency (Chapter 1)

A generalized description of CA-IDMS/DBOMP Transparency processing

■ CA-IDMS/DBOMP Transparency Environment (Chapter 2)

A description of CA-IDMS/DBOMP Transparency support of DBOMP Assembler
macros, DBOMP process indicators, and DBOMP special routines

■ CA-IDMS/DBOMP Transparency Programs and Macros (Chapter 3)

A detailed description of CA-IDMS/DBOMP Transparency components

■ Converting DBOMP Systems to CA-IDMS/DB (Chapter 4)

Steps for converting DBOMP data and programs to CA-IDMS/DB

■ Using CA-IDMS/DBOMP Transparency as a Bridge to CA-IDMS/DB

(Chapter 5)

Steps for preparing and executing DBOMP Assembler programs with
CA-IDMS/DBOMP Transparency

■ PL/I Considerations (Appendix A)

A description of CA-IDMS/DBOMP Transparency support of DBOMP PL/I com-
mands and steps that you use to prepare and execute DBOMP PL/I programs with
CA-IDMS/DBOMP Transparency

■ COBOL Considerations (Appendix B)

A description of CA-IDMS/DBOMP Transparency support of DBOMP COBOL
commands and steps that you use to prepare and execute DBOMP COBOL pro-
grams with the CA-IDMS/DBOMP Transparency

■ Sample Application (Appendix C)

A description of and source code for IMBSBILL, a sample CA-IDMS application
program

■ Setting Up Under OS/390 (Appendix D)

A sample jobstream under OS/390

■ Setting Up Under VSE/ESA (Appendix E)

A sample jobstream under VSE/ESA

x CA-IDMS DBOMP Transparency

Related CA-IDMS documentation

This manual should be used in conjunction with the following CA-IDMS documents:

■ The CA-IDMS installation guide for your operating system

■ CA-IDMS Database Design Guide

■ CA-IDMS Navigational DML Programming

■ CA-IDMS DML Reference - COBOL

■ CA-IDMS DML Reference - PL/I

■ CA-IDMS Messages and Codes

 ■ CA-IDMS Utilities

■ CA-IDMS IDD DDDL Reference Guide

How to use this Manual xi

xii CA-IDMS DBOMP Transparency

Chapter 1. Introduction to the CA-IDMS/DBOMP
Transparency

1.1 Functions and modules . 1-4
1.1.1 Functions . 1-4
1.1.2 Modules . 1-5

1.2 Data description guidelines . 1-7
1.3 Programming requirements . 1-8
1.4 Installation . 1-9

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-1

1-2 CA-IDMS DBOMP Transparency

The CA-IDMS/DBOMP Transparency facilitates conversion from DBOMP or its
OS/390 equivalent, CFMS, to CA-IDMS/DB. By simulating the DBOMP environ-
ment, the transparency allows you to run existing DBOMP application programs after
the DBOMP files have been converted to CA-IDMS/DB database files. This allows
for a gradual conversion from DBOMP to CA-IDMS/DB.

Minimal user involvement: The CA-IDMS/DBOMP Transparency is usually
transparent to the DBOMP retrieval and update programs that it bridges, requiring little
or no program alteration and usually no reassembly.

Conversion tool: To aid you in converting DBOMP load and maintenance pro-
grams, the transparency package includes a prototype CA-IDMS/DB bill-of-materials
application program. This program shows the logic required to add records to and
delete records from a CA-IDMS/DB database.

�� This program is in Appendix C, “Sample Application and Procedures.”

System requirements: The transparency requires no operating system facilities
other than those necessary for CA-IDMS/DB.

Two of the CA-IDMS/DBOMP Transparency modules, IMBSBRDG and IMBSTAB,
require 5Kb memory in addition to that needed for standard CA-IDMS/DB processing.
Disk storage and all other memory requirements are the same as for CA-IDMS/DB.
The transparency operates under the CA-IDMS/DB central version or in local mode.

The remainder of this chapter discusses the following topics:

■ CA-IDMS/DBOMP Transparency functions and modules

■ Data description guidelines

 ■ Programming restrictions

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-3

1.1 Functions and modules

1.1 Functions and modules

This section describes what the CA-IDMS/DBOMP Transparency does and the
modules it uses to do it.

 1.1.1 Functions

The transparency acts as a bridge between the DBOMP application program and
CA-IDMS/DB, as follows:

■ Accepts data and processing requests from the calling program

■ Converts the data to CA-IDMS/DB record formats

■ Converts the processing requests to CA-IDMS/DB commands

■ Passes the converted information to the CA-IDMS/DB database management
system

Conversely, the transparency also:

■ Retrieves data from the CA-IDMS/DB database

■ Converts the data to DBOMP record formats

■ Returns the converted data, along with CA-IDMS/DB control information, to the
calling program

All communication occurs between the DBOMP program and the transparency or
between transparency and CA-IDMS/DB. The transparency does not interface directly
with the operating system.

The following figure illustrates the CA-IDMS/DBOMP Transparency processing
sequence.

1-4 CA-IDMS DBOMP Transparency

1.1 Functions and modules

 1.1.2 Modules

The two central transparency modules are IMBSBRDG and IMBSTAB:

■ IMBSBRDG — handles all application program requests for database services

■ IMBSTAB (user-customized bridge module) — supplies IMBSBRDG with the
CA-IDMS/DB and DBOMP record descriptions necessary to simulate DBOMP
processing

IMBSBRDG and IMBSTAB are discussed briefly below. These and other transpar-
ency components are described in detail in Chapter 3, “Transparency Programs and
Macros.”

IMBSBRDG: The IMBSBRDG module replaces the DBOMP modules:

 ■ BM$PIO

 ■ AP$SEQ

IMBSBRDG simulates DBOMP retrieval processing and update processing at the
BM$PIO and AP$SEQ entry points, as shown in the following table.

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-5

1.1 Functions and modules

IMBSTAB: The IMBSTAB customized bridge module is generated by the user-coded
customizing macro, IMBS. IMBSTAB consists entirely of buffers and tables that
describe the DBOMP files and their equivalent CA-IDMS/DB record types and set
relationships. IMBSTAB provides IMBSBRDG with the environmental information
necessary to build DBOMP records to be returned to the calling program and to recon-
struct CA-IDMS/DB records to be returned to the CA-IDMS/DB database.

Simulation of: Description

Retrieval processing 1. Accepts a DBOMP call to entry point BM$PIO or
AP$SEQ

2. Validates the DBOMP file name and process indi-
cator

3. Converts the process indicator to a CA-IDMS/DB
call

4. Retrieves the requested record from the
CA-IDMS/DB database

5. Converts the retrieved CA-IDMS/DB record to a
DBOMP record

6. Returns the converted record to the calling program

7. Converts the CA-IDMS/DB error status to the appro-
priate DBOMP error code

8. Updates the work area prefix

9. Returns control to the calling program

Update processing 1. Accepts a DBOMP call to entry point BM$PIO or
AP$SEQ

2. Validates the DBOMP file name and process indi-
cator

3. Converts the process indicator to a CA-IDMS/DB
call

4. Reconstructs a CA-IDMS/DB record from the
updated DBOMP record

5. Returns the reconstructed record to the CA-IDMS/DB
database

6. Converts the CA-IDMS/DB error status to the appro-
priate DBOMP error code

7. Updates the work area prefix

8. Returns control to the calling program

1-6 CA-IDMS DBOMP Transparency

1.2 Data description guidelines

1.2 Data description guidelines

Adhere to the data description guidelines presented below when you describe the parts
of the CA-IDMS/DB database that will be accessed by bridged DBOMP programs:

■ Make sure there is one CA-IDMS/DB record type for every DBOMP file to be
simulated.

■ Check the schema description of the CA-IDMS/DB record types. Make sure the
description allows the generation of a subschema view that represents the data
exactly as it appears on the DBOMP files, with the exception of disk addresses,
which are not part of the schema description.

■ Define record types that are members of more than one set in the schema with
next, prior, and owner pointers, so that an end-of-set condition can be detected by
the transparency and communicated to the calling program.

■ Store DBOMP master files as CALC or DIRECT (for sequential processing)
record types on the CA-IDMS/DB database.

■ Store DBOMP chain files as VIA record types on the CA-IDMS/DB database;
however, these member records can also be described as owners of other sets.

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-7

1.3 Programming requirements

 1.3 Programming requirements

You must do the following for any DBOMP application program you want to bridge
with the transparency:

■ Make all database service requests using the following Assembler macros:

 CA$LL
 CHA$E
 GE$T
 PU$T
 ST$KY
 ST$DA

�� For PL/I equivalents of these macros, see Appendix A, “PL/I Considerations.”
For COBOL equivalents of these macros, see Appendix B, “COBOL
Considerations.”

■ Remove MF$SQ and FI$LE macros from the application program; replace them
with the transparency macro IMBSEQ.

�� For information on IMBSEQ, see Chapter 3, “Transparency Programs and
Macros.”

■ Use an index for the logical sequential ordering of master records.

�� For information on indexing, see CA-IDMS Database Administration.

■ Make sure that the application program does not combine DBOMP calls with
CA-IDMS/DB calls.

�� For information on using CA-IDMS/DB verbs in a bridged DBOMP program,
see 2.6, “How to include CA-IDMS DML statements.”

■ Convert any application program that performs structural maintenance functions to
CA-IDMS/DB.

�� For information on converting maintenance programs, see 4.2, “Converting
DBOMP load and maintenance programs.”

1-8 CA-IDMS DBOMP Transparency

1.4 Installation

 1.4 Installation

Use the CA-IDMS installation tape to install the CA-IDMS/DBOMP Transparency
software.

�� For complete installation information, refer to the CA-IDMS installation guide for
your operating system.

The following three tables list the object, source, and load modules placed in
CA-IDMS/DBOMP Transparency or CA-IDMS/DB libraries at the time of installation.

Object and load modules placed during installation: Items listed in the fol-
lowing table exist as both object and load modules.

Source modules placed during installation: Modules listed in the following
table exist as source only.

Module Description

IMBSBRDG Bridge program

IMBSPROC Database procedure

Chapter 1. Introduction to the CA-IDMS/DBOMP Transparency 1-9

1.4 Installation

Module Description

BRDGSAMP OS/390 JCL for BRDGSAMP procedure

(for more information, see Appendix C, “Sample Appli-
cation and Procedures”)

IMBS Customizing macro

IMBSBILL Sample CA-IDMS/DB COBOL manufacturing applica-
tion program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL IMBS COBOL interface macro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA-IDMS/DBOMP Transparency PL/I interface macro

IMBSPROC Source code for database procedure object module

IMBSSAMP OS/390 JCL for IMBSSAMP procedure

(for more information, see Appendix C, “Sample Appli-
cation and Procedures”)

IMBSSCHM Sample CA-IDMS/DB schema description

IMBSSUBS Sample CA-IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

1-10 CA-IDMS DBOMP Transparency

Chapter 2. The Transparency Environment

2.1 Overview . 2-3
2.2 DBOMP macros supported . 2-4

2.2.1 Macros supported unconditionally . 2-4
2.2.2 Macros that require program modification and reassembly 2-4
2.2.3 Macros not supported . 2-5
2.2.4 Macros processed independently of the transparency 2-6

2.3 DBOMP process indicators supported . 2-7
2.3.1 Process indicators fully supported . 2-7
2.3.2 Process indicators supported with exceptions 2-7
2.3.3 Process indicators not supported . 2-8

2.4 DBOMP routines supported . 2-9
2.5 CA-IDMS DML statements supported in bridged programs 2-10
2.6 How to include CA-IDMS DML statements 2-11

Chapter 2. The Transparency Environment 2-1

2-2 CA-IDMS DBOMP Transparency

2.1 Overview

 2.1 Overview

CA-IDMS/DBOMP Transparency functions include:

■ Simulation of the logic generated by DBOMP retrieval and update macros and
process indicators

■ Limited maintenance of the Run Activity Control Number (RACN)

■ Support of a limited number of CA-IDMS verbs issued from bridged programs

This chapter discusses support for the following entities in the transparency environ-
ment:

 ■ DBOMP macros

■ DBOMP process indicators

■ Special DBOMP routines

■ CA-IDMS DML statements

Chapter 2. The Transparency Environment 2-3

2.2 DBOMP macros supported

2.2 DBOMP macros supported

The transparency supports, to varying degrees, DBOMP programs that issue retrieval
and update macros. Support of DBOMP programs that issue macros to entry point
BM$PIO is unconditional and requires no program modification; Support of DBOMP
programs that issue macros to AP$SEQ requires that the programs be modified and
reassembled. To modify these programs, you replace DBOMP macros that provide
logic routines for sequential and consecutive processing with the transparency's
macros.

This section describes the following categories of DBOMP Assembler macros in the
transparency environment:

■ Macros supported unconditionally by the transparency

■ Macros requiring program modification and reassembly

■ Macros not supported by the transparency

■ Macros processed independently of the transparency

�� For information on PL/I equivalent macros, see Appendix A, “PL/I
Considerations.” For information on COBOL equivalent macros, see Appendix B,
“COBOL Considerations.”

2.2.1 Macros supported unconditionally

The transparency simulates unconditionally the processing generated by macros issued
to entry point BM$PIO. Programs that issue macros only to this entry point need not
be altered or reassembled. The transparency interprets these macros as follows:

■ CA$LL (issued directly or as part of the CHA$E macro expansion) — Establishes
linkage with the transparency by passing the work area prefix to the bridge
program

■ CHA$E — Walks a set

2.2.2 Macros that require program modification and reassembly

The transparency requires that programs issuing macros to entry point AP$SEQ be
altered and subsequently reassembled before interfacing with the bridge. The transpar-
ency can simulate the following macros only if you remove the prerequisite MF$SQ
and FI$LE macros from the issuing program and replace them with the transparency
macro IMBSEQ (see Chapter 3, “Transparency Programs and Macros”):

■ GE$T — Sequential retrieval

■ PU$T — Sequential update

■ ST$KY — Skip-sequential retrieval using logical key

■ ST$DA — Skip-sequential retrieval using disk address

2-4 CA-IDMS DBOMP Transparency

2.2 DBOMP macros supported

Transparency support of the sequential processing logic generated by the ST$KY and
ST$DA macros assumes the use of indexing. Indexing allows the transparency to
support logical sequential dependencies in DBOMP programs. If indexing hasn't been
defined for the database, all programs using ST$KY and ST$DA must be altered to
remove logical sequential dependencies before interfacing with the bridge.

The transparency handles GET, PUT, ST$KY, and ST$DA as follows:

■ GE$T — The transparency retrieves the first record in the logical or physical
sequence of the named file and returns it to the work area. Subsequent GE$T
macros issued for the same file cause the transparency to retrieve records in
logical sequential order from that point if the record type is indexed, or in physical
sequential order from that point if the record type is not indexed. Each retrieved
record becomes current of run unit and current of its record type.

■ PU$T — The transparency verifies that the named record is current of the trans-
action, updates the record with the information in the user work area, and returns
the record to the CA-IDMS/DB database. If the record is not current of run unit
when PU$T is issued, CA-IDMS/DBOMP Transparency performs a direct read to
establish currency.

■ ST$KY — The transparency retrieves a record by the key specified in the work
area prefix for the named file and returns the record to the work area. Currency
for the file (record type) is set at the retrieved record. Subsequent GE$T macros
cause the transparency to retrieve records in logical sequential order from that
point if the record type is indexed, or in physical sequential order from that point
if the record type is not indexed.

■ ST$DA — The transparency retrieves a record by the disk address specified in the
work area prefix for the named file and returns the record to the work area. Cur-
rency for the file (record type) is set at the retrieved records in logical sequential
order from that point if the record type is indexed, or in physical sequential order
from that point if the record type is not indexed.

2.2.3 Macros not supported

The following lists shows the DBOMP macros you should remove from your bridged
programs and what to replace them with.

Remove this macro: Replace it with:

MF$SQ IMBSEQ

FI$LE IMBSEQ

CF$RT IMBSEQ

CGE$T GE$T

CPU$T PU$T

Chapter 2. The Transparency Environment 2-5

2.2 DBOMP macros supported

2.2.4 Macros processed independently of the transparency

The following macros are executed independently of the transparency. Do not alter
them or remove them from bridged programs:

■ BM$DS — Generates dummy sections

■ BM$WA — Generates the work area prefix

■ EQ$RG — Equates registers to a symbol

■ MO$VE — Moves a variable number of bytes from one field to another

■ MSG — Displays a message on the console

■ TY$PE — Displays data on the console

2-6 CA-IDMS DBOMP Transparency

2.3 DBOMP process indicators supported

2.3 DBOMP process indicators supported

The transparency supports most DBOMP process indicators that request retrieval and
update functions. That support is achieved when the transparency does the following:

1. Accepts DBOMP process indicators that are passed in the work area prefix when a
CA$LL macro is issued.

2. Converts those process indicators to CA-IDMS/DB calls.

Note: The transparency does not support any DBOMP process indicators that request
structural maintenance functions.

2.3.1 Process indicators fully supported

The following process indicators are supported by the transparency in the same manner
they are supported by DBOMP:

■ MRAN — Reads master file record by key and return data

■ MRKY — Reads master file record by key

(positioning only)

■ MDIR — Reads master file record by disk address and return data

■ MRDR — Reads master file record by disk address

(positioning only)

■ MUPD — Updates current master file record

■ CDIR — Reads chain file record by disk address and return data

■ CRDR — Reads chain file record by disk address

(positioning only)

■ CUPD — Updates current chain file record

2.3.2 Process indicators supported with exceptions

The following process indicators are supported by the transparency but are handled in
a manner that is different from DBOMP:

■ CMPR — The transparency moves the disk address from the work area prefix,
simulating compression. Since CA-IDMS/DB uses only 4-byte relative addresses,
actual compression is unnecessary. This operation is transparent to the calling
program, and no program changes need be made.

■ EXPN — The transparency moves the disk address to the work area prefix, simu-
lating expansion. Since CA-IDMS/DB uses only 4-byte relative addresses, actual
expansion is unnecessary. This operation is transparent to the calling program,
and no program changes need be made.

Chapter 2. The Transparency Environment 2-7

2.3 DBOMP process indicators supported

■ OPEN — The first CA$LL issued by the DBOMP program moves an OPEN
process indicator to the work area prefix of each file. The first OPEN encount-
ered by the transparency opens the entire CA-IDMS/DB database: BINDs are
issued for the run unit and all record types, and database areas are READYed. In
addition, the OPEN process indicator for the first and all other files causes the
transparency to determine, for future processing purposes, how the corresponding
record type is stored on the CA-IDMS/DB database (CALC or DIRECT for
master files; VIA for chain files). OPEN also causes the transparency to deter-
mine from information in IMBSTAB whether the file named in the CA$LL is the
one for which RACN processing has been requested. If so, the transparency
returns the file control record to the work area for that record (for information
about the transparency's support of RACN, see 2.4, “DBOMP routines supported”

■ CLOS — The first CLOS encountered by the transparency closes the entire
CA-IDMS/DB database: the transparency updates the file control record if RACN
processing has been requested for a file, and then issues a FINISH command.

2.3.3 Process indicators not supported

The following DBOMP retrieval and update process indicators are not supported by
the transparency. Remove them from bridged programs:

 ■ MWRT

 ■ CWRT

 ■ CCHG

 ■ CCSR

2-8 CA-IDMS DBOMP Transparency

2.4 DBOMP routines supported

2.4 DBOMP routines supported

The transparency provides the logic for limited maintenance of the Run Activity
Control Number (RACN). If you want to retain RACN logic in bridged programs,
modify RACN processing within each program to accommodate the limited support
provided by the transparency.

Note: The transparency does not acknowledge low-level code logic or chain count
logic. The presence of low-level code or chain count fields in a DBOMP file
does not necessitate program modification. These fields are ignored.

The transparency supports RACN logic as follows:

■ RACN processing is maintained for only one DBOMP file

■ OPEN processing causes the transparency to return to the calling DBOMP
program the file control record for the file for which RACN has been specified

■ CLOS processing causes the transparency to MODIFY the file control record,
thereby returning it to the database

Once the file control record has been made available to the program, the transparency
ignores it until a CLOS process indicator is issued. All RACN logic is executed inde-
pendently of the transparency so the contents of the file control record can be manipu-
lated by the executing program as you wish. When the transparency encounters a
CLOS process indicator, it modifies the file control record, whether or not the
DBOMP program has updated that record.

You are reponsible for storing (in the CA-IDMS/DB database) one occurrence of the
record for which RACN processing is specified. The database key for this record must
be initialized to binary zeros.

Chapter 2. The Transparency Environment 2-9

2.5 CA-IDMS DML statements supported in bridged programs

2.5 CA-IDMS DML statements supported in bridged
programs

The transparency supports certain CA-IDMS DML statements issued from a DBOMP
program. These DML statements (for Assembler) are as follows:

 ■ @BIND PROC

 ■ @COMMIT(ALL)

 ■ @ROLLBAK(CONTINUE)

 ■ @ACCEPT(STATS/PROC)

2-10 CA-IDMS DBOMP Transparency

2.6 How to include CA-IDMS DML statements

2.6 How to include CA-IDMS DML statements

For each CA-IDMS DML statement you want to include in a bridge program, do the
following:

1. Build a three-field argument in the program variable storage of the bridged
DBOMP program.

2. Pass the arguments to the bridge program. The transparency converts the values
in the arguments to CA-IDMS DML statements.

Step 1 — Build the argument: Use the information in the following table to build
the three-field argument for the DML statement.

The acceptable values for field 2 (shown in the preceding table) are:

■ Name of the database procedure, if @BINDing to or @ACCEPTing from a data
procedure

■ STATS, if @ACCEPTing database statistics

Field Usage Length Contents

1 Character 8 The literal value of the CA-IDMS verb
issued by the bridged program. Accept-
able values are:

 ■ @BIND

 ■ @COMMIT

 ■ @ROLLBAK

 ■ @ACCEPT

PL/I or COBOL equivalents are also
acceptable.

2 Character 8 The literal value of the CA-IDMS
keyword associated with the CA-IDMS
verb entered in field 1. Acceptable values
are as shown in the list following this
table.

3 Character 1-256 The variable data passed by :

 ■ @BIND PROC

 ■ @ACCEPT PROC

or

 ■ @ACCEPT STATS

This field is necessary only if one of these
DML statements is issued.

Chapter 2. The Transparency Environment 2-11

2.6 How to include CA-IDMS DML statements

■ ALL, if issuing the @COMMIT verb and releasing locks on current records; enter
spaces if issuing an unqualified @COMMIT verb

■ CONTINUE, if issuing the @ROLLBAK verb and terminating the run unit; enter
spaces if issuing an unqualified @ROLLBAK verb

In the following example, the bridged DBOMP Assembler program builds the argu-
ment IDMSREQ to issue the CA-IDMS DML statement @ACCEPT STATS:

IDMSREQ DS OD

IDMSVERB DC CL8'@ACCEPT '

IDMSKEY DC CL8'STATS '

IDMSAREA DS CL256

2-12 CA-IDMS DBOMP Transparency

2.6 How to include CA-IDMS DML statements

Step 2 — Pass the argument to the bridge program:

Bridged DBOMP Assembler program:

Include this statement in a bridged DBOMP Assembler program to pass the CA-IDMS
DML statement argument to the bridge program:

CA$LL BMP$IO,argument-name

Bridged DBOMP PL/I program: Include this statement in a bridged DBOMP PL/I
program to pass the CA-IDMS DML statement argument to the bridge program:

CALL CA$LL(argument_name,'END.')

Bridged DBOMP COBOL program: Include this statement in a bridged DBOMP
COBOL program to pass the CA-IDMS DML statement argument to the bridge
program:

CALL BMPCALL USING argument-name.

Chapter 2. The Transparency Environment 2-13

2-14 CA-IDMS DBOMP Transparency

Chapter 3. Transparency Programs and Macros

3.1 IMBS customizing macro . 3-4
3.1.1 Control statement . 3-4
3.1.2 Set identification statement . 3-6
3.1.3 File/record type description statement 3-7
3.1.4 Pointer/set relationship statement . 3-8
3.1.5 Delimiter statement . 3-8

3.2 Output from IMBS macro — IMBSTAB . 3-9
3.2.1 IMBSTAB error messages . 3-12

3.3 Sample IMBS and IMBSTAB . 3-14
3.4 IMBSPROC database procedure . 3-19
3.5 IMBSBRDG program module . 3-21

3.5.1 Converting DBOMP calls to CA-IDMS/DB statements 3-21
3.5.2 Converting records retrieved from CA-IDMS/DB 3-23

3.6 IMBSEQ macro . 3-28

Chapter 3. Transparency Programs and Macros 3-1

3-2 CA-IDMS DBOMP Transparency

This chapter provide information on the transparency components that are described
briefly in the following table.

Component Brief description

IMBS customizing
macro

Describes the DBOMP files and the equivalent CA-IDMS/DB
database. The IMBS macro generates IMBSTAB.

IMBSTAB Contains (in tabular format) the data that the bridge program
uses to convert CA-IDMS/DB records to DBOMP records.

IMBSPROC data-
base procedure

Moves pointers from the subschema table into a CA-IDMS/DB
dummy record.

IMBSBRDG
program module

Simulates DBOMP records and processing using IMBSTAB,
IMBSPROC, IMBSEQ (or equivalent COBOL or PL/I
macros), and CA-IDMS/DB.

IMBSEQ macro Supports the DBOMP GET, PUT, ST$KY, and ST$DA
macros in Assembler programs and replaces the MF$SQ,
FI$LE, and CF$RT macros.

�� For information on equivalent PL/I and COBOL macros,
see Appendix A, “PL/I Considerations” and Appendix B,
“COBOL Considerations.”

Chapter 3. Transparency Programs and Macros 3-3

3.1 IMBS customizing macro

3.1 IMBS customizing macro

IMBS is an Assembler macro that describes DBOMP files and the CA-IDMS/DB data-
base that replaces them.

Input statements for IMBS are as follows:

 ■ Control

 ■ Set identification

■ File/record type description

 ■ Pointer/set relationship

 ■ Delimiter

These statements require set names, file names, record types, logical record length, and
pointer displacement in DBOMP records. To get this information, use the IDMSRPTS
utility (see CA-IDMS Utilities), running these reports:

Syntax for the input statements is provided in the following sections.

Report name Gives information on:

RECDES Record types defined in a schema

SETDES Sets defined in a schema

DATDIR Record types copied into a subschema (general)

SUBREC Record types copied into a subschema (comprehensive)

SUBAREA Areas copied into a subschema

SUBSET Sets copied into a subschema

 3.1.1 Control statement

The control statement specifies control information for the run, including usage mode
and required names.

3-4 CA-IDMS DBOMP Transparency

3.1 IMBS customizing macro

��─── IMBS -─┬────────────────────────────┬─ SUBSCH=subschema-name ───────────�

└─ SYSTEM= ─┬─ DBMP ← ─┬─ , ─┘

└─ CFMS ───┘

 �─┬──┬───────────────────────────────�

└─ ,IMBSREC= ─┬─ IMBS-RECORD ← ──────────┬─┘

└─ idms-dummy-record-name ─┘

 �─┬─────────────────────────────────┬──�

└─ ,RACN= ─┬─ ITEM-MASTER ← ────┬─┘

└─ racn-record-name ─┘

 �─┬──────────────────────┬───�

└─ ,USAGE= ─┬─ PU ← ─┬─┘

├─ PR ───┤

├─ SU ───┤

├─ SR ───┤

├─ ER ───┤

└─ EU ───┘

 �─┬──────────────────────────┬───�

└─ ,PGMNAME=program-name -─┘

 �─┬───────────────────────────────┬──�

└─ ,SETLMT= ─┬─ 16 ← ─────────┬─┘

└─ limit-number ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,DBPROC= ─┬─ IMBSPROC ← ────────┬─┘

└─ db-procedure-name ─┘

 �─┬──┬───────────────────────────────�B

└─ ,CATALR= ─┬─ NO ← ────────────────────┬─┘

├─ YES ─────────────────────┤

└─ relocatable-module-name ─┘

IMBS
Constant; Code anywhere after column one.

SYSTEM=DBMP/CFMS
Specifies DBMP or CFMS, as appropriate. The default value is DBMP.

SUBSCH=subschema-name
Specifies the subschema name as it is known to CA-IDMS/DB.

IMBSREC=IMBS-RECORD/idms-dummy-record-name
Specifies the name of the CA-IDMS/DB dummy record as defined in the schema.
The default value is IMBS-RECORD.

RACN=ITEM-MASTER/racn-record-name
Specifies the name of the record for which RACN processing is requested. The
default value is ITEM-MASTER.

USAGE=
Specifies the CA-IDMS/DB usage mode in which all areas named in the
subschema are to be READYed.

PU
Protected update (the default)

Chapter 3. Transparency Programs and Macros 3-5

3.1 IMBS customizing macro

PR
Protected retrieval

SU
Shared update

SR
Shared retrieval

ER
Exclusive retrieval

EU
Exclusive update

PGMNAME=program-name
Specifies the name of the program to be bridged. This parameter defaults to
IDMSDBMP if DBMP is indicated in the SYSTEM= parameter, or to
IDMSCFMS if CFMS is indicated in the SYSTEM= parameter.

SETLMT=limit-number
Sets the maximum number of sets that can be defined in a single IMBSTAB. The
default is 16. The largest allowed number is 255.

DBPROC=IMBSPROC/db-procedure-name
Specifies the name of a database procedure that passes pointers from the
subschema table to the CA-IDMS/DB dummy record. The default value,
IMBSPROC, should be used unless a database procedure by that name already
exists.

CATALR=
Specifies the CATALR option (VSE/ESA only).

NO
Specifies that a CATALR card is not to be provided at the front of the object
deck. NO is the default.

YES
Specifies that a CATALR card is to be provided at the front of the object
deck, naming IMBSTAB as the relocatable module.

relocatable-module-name
Specifies the relocatable module to be named on the CATALR card placed at
the front of the object deck.

3.1.2 Set identification statement

The set identification statement names a CA-IDMS/DB set. One set identification
statement must exist for each set type to be accessed by the bridged program.

��─── IMBS SET=(set-number,set-name) ───�B

IMBS
Constant; Code anywhere after column one.

3-6 CA-IDMS DBOMP Transparency

3.1 IMBS customizing macro

set-number
Specifies a 2-digit number indicating the set number. Set identification statements
must be entered in sequence by this number.

Set-number cannot exceed the value of the SETLMT parameter in the control
statement.

set-name
Specifies the name of the set as it appears in the subschema.

3.1.3 File/record type description statement

The file/record type description statement describes the characteristics of the DBOMP
file and names the CA-IDMS/DB record type to which it corresponds. There must be
one file/record type description statement for each DBOMP file referenced by the
bridged program.

This statement must be followed by a pointer/set relationship statement for each
pointer that is established for the record type and that is to be passed to the calling
program by the database procedure.

��─── IMBS RECNAME=(dbomp-file-name,idms-record-type-name) ───────────────────�

 �─── ,TYPE= ─┬─ M ─┬─ ,KEYL=key-length ──────────────────────────────────────�

├─ C ─┤

└─ S ─┘

 �─── ,LRECL=record-length ───�B

IMBS
Constant; Code anywhere after column one.

dbomp-file-name
Specifies the 7-character name of the DBOMP file.

idms-record-type-name
Specifies the name of the corresponding CA-IDMS/DB record type as it appears
in the subschema.

TYPE=
Specifies the type of DBOMP file.

M
Master file

C
Chain file linked to more than one master file; note that if C is specified, the
corresponding record type must have next, prior, and owner pointers.

S
Chain file linked to only one master file; any file/record type description
statement specifying TYPE=S must be preceded by a file/record type
description statement for the master file to which it is linked.

Chapter 3. Transparency Programs and Macros 3-7

3.1 IMBS customizing macro

KEYL=key-length
Specifies the length of the record key as it is specified in the work area prefix of
the DBOMP file. Key-length must be between 0 and 256; specify 0 for all chain
files except those with product-structure characteristics where the master-record
key length is used.

LRECL=record-length
Specifies the length, in bytes, of the record as it appears on the DBOMP record
layout. The length of the work area prefix should not be included in this value.

3.1.4 Pointer/set relationship statement

Pointer/set relationship statements provide CA-IDMS/DBOMP Transparency with
information about the pointers established for each record type that is to be passed
from the database to the user work area. One pointer/set relationship statement must
exist for each pointer that is to be passed for the record type described in the pre-
ceding file/record type description statement.

��─── IMBS POINTER=(pointer-number,pointer-type,pointer-displacement-number) ─�B

IMBS
Constant; Code anywhere after column one.

pointer-number
Specifies the two-digit number corresponding to the sequential number in the set
identification statement (see above) for the set to which the pointer links the
record.

pointer-type
Specifies the type of pointer, as follows:

■ N — Next pointer

■ P — Prior pointer

■ O — Owner pointer

■ X — Dummy pointer; causes the constant END to be moved to the specified
pointer position in the simulated DBOMP record

pointer-displacement-number
Specifies the displacement of the pointer in the DBOMP logical record, where the
record begins at byte 1.

 3.1.5 Delimiter statement

The delimiter statement indicates the end of the input statement entries. Code the
constant IMBS anywhere after column one.

��─── IMBS END ───�B

3-8 CA-IDMS DBOMP Transparency

3.2 Output from IMBS macro — IMBSTAB

3.2 Output from IMBS macro — IMBSTAB

IMBSTAB is an Assembler program module generated by the IMBS macro. It con-
sists of storage (DS) and storage constants (DC), in the form of tables and buffers.
IMBSTAB:

■ Supplies IMBSPROC with information needed to move pointers for current
records from the CA-IDMS/DB subschema table into the dummy CA-IDMS/DB
record

■ Provides IMBSBRDG with information needed to build DBOMP records from
retrieved CA-IDMS/DB records

■ Supplies IMBSBRDG with the information needed to return updated records from
the user work area to the CA-IDMS/DB database

The IMBSTAB module contains the following four tables:

The control table, set table, pointer table, and file table layouts are shown in the
figures on the following pages.

 Control table:
┌───────────┬──┬─────────┐

│ Displace- │ Field Contents │ Field │

│ ment │ │ Length │

├───────────┼───────────────────┬──┼─────────┤

│ I │ System name │ │ 4 │

├───────────┼───────────────────┴──┐ ├─────────┤

│ 4 │ Addresses of other tables and logical record buffer │ │ 16 │

├───────────┼──┤ ├─────────┤

│ 2I │ CA-IDMS/DB dummy record name │ │ 16 │

├───────────┼─────────────────────────────────┬──────────────────────────┘ ├─────────┤

│ 36 │ Database procedure name │ │ 8 │

├───────────┼─────────────────────────────────┤ ├─────────┤

│ 44 │ Subschema name │ │ 8 │

├───────────┼─────────────────────────────────┤ ├─────────┤

│ 52 │ Program name │ │ 8 │

├───────────┼─────────────────────────────────┴──────────────────────────┐ ├─────────┤

│ 6I │ RACN record name │ │ 16 │

├───────────┼───────────────────┬──┘ ├─────────┤

│ 76 │ Usage mode │ │ 4 │

├───────────┼───────────────────┴──────────┐ ┌────────────────────────────────────┐ ├─────────┤

│ 8I │ CA-IDMS/DB communications ┌┘┌┘ block - SSCTRL │ │ │

└───────────┴─────────────────────────────┴─┴─────────────────────────────────────┴──┴─────────┘

Set table: The set table contains one entry for each set described to the IMBS
macro.

Table Contains:

Control table Control information

Set table An entry for each set described to the IMBS macro

Pointer table Pointers for each set described to the IMBS macro; the groups of
pointers are in the same order as the corresponding sets in the set
table.

File table A group of entries for each file described to the IMBS macro

Chapter 3. Transparency Programs and Macros 3-9

3.2 Output from IMBS macro — IMBSTAB

┌───────────┬──┬─────────┐

│ Displace- │ Field Contents │ Field │

│ ment │ │ Length │

├───────────┼──┬───────────┼─────────┤

│ I │ set-name-1 │ │ 16 │

├───────────┼──┤ ├─────────┤

│ 16 │ set-name-2 │ │ 16 │

├───────────┼──┘ ├─────────┤

│ │ O │ │

│ │ O │ │

│ │ O │ │

│ ├───┐ ├─────────┤

│ │ set-name-n │ │ 16 │

└───────────┴───┴────────────┴─────────┘

Pointer table: The pointer table contains one group of pointers (owner, prior,
current, and next) for each set described to the IMBS macro, in the same order as the
sets to which they correspond are named in the set table.

┌───────────┬──┬─────────┐

│ Displace- │ Field Contents │ Field │

│ ment │ │ Length │

├───────────┼──┬───────┼─────────┤

│ I │ set-name-1 pointers │ │ 16 │

│----------─┼─ - - - - - ─┬─ - ┘ ├─────────┤

│ I │ owner pointer │ │ 4 │

├───────────┼───────────────┼───────────────┐ ├─────────┤

│ 4 │ │ prior pointer │ │ 4 │

├───────────┤ └───────────────┼─────────────────┐ ├─────────┤

│ 8 │ │ current pointer │ │ 4 │

├───────────┤ └─────────────────┼──────────────┐ ├─────────┤

│ 12 │ │ next pointer │ │ 4 │

├───────────┼───┴──────────────┤ ├─────────┤

│ 16 │ set-name-2 pointers │ │ 16 │

├───────────┼ - - - - - - -─┬── - ─┘ ├─────────┤

│ 16 │ owner pointer │ │ 4 │

├───────────┼───────────────┼───────────────┐ ├─────────┤

│ 2I │ │ prior pointer │ │ 4 │

├───────────┤ └───────────────┼─────────────────┐ ├─────────┤

│ 24 │ │ current pointer │ │ 4 │

├───────────┤ └─────────────────┼──────────────┐ ├─────────┤

│ 28 │ │ next pointer │ │ 4 │

├───────────┼───┴──────────────┘ ├─────────┤

│ │ │ │

│ │ O │ │

│ │ │ │

│ │ O │ │

│ │ │ │

│ │ O │ │

├───────────┼──┐ ├─────────┤

│ │ set-name-n pointers │ │ 16 │

│ ├─ - - - - - - ─┬─ -─┘ ├─────────┤

│ │ owner pointer │ │ 4 │

│ ├───────────────┼───────────────┐ ├─────────┤

│ │ │ prior pointer │ │ 4 │

│ │ └───────────────┼─────────────────┐ ├─────────┤

│ │ │ current pointer │ │ 4 │

│ │ └─────────────────┼──────────────┐ ├─────────┤

│ │ │ next pointer │ │ 4 │

└───────────┴───┴──────────────┴───────┴─────────┘

File table: The file table contains one group of entries for each DBOMP file and
corresponding CA-IDMS/DB record type described to the IMBS macro.

3-10 CA-IDMS DBOMP Transparency

3.2 Output from IMBS macro — IMBSTAB

┌───────────┬──┬─────────┐

│ Displace- │ Field Contents │ Field │

│ ment │ │ Length │

├───────────┼────────────────────────┬───┼─────────┤

│ I │ next-entry PTR │ │ 4 │

├───────────┼────────────────────────┴─────────────────────────┐ ├─────────┤

│ 4 │ DBOMP file name │ │ 7 │

├───────────┼────────────┬─────────────────────────────────────┘ ├─────────┤

│ 11 │ File type │ │ 1 │

├───────────┼────────────┴───┐ ├─────────┤

│ 12 │ CA-IDMS/DB record type name │ │ 16 │

├───────────┼────────────┬───┘ ├─────────┤

│ 28 │ │ ← Switch │ 1 │

├───────────┼────────────┤ ├─────────┤

│ 29 │ Key length │ │ 1 │

├───────────┼────────────┴───┐ ├─────────┤

│ 3I │ Record length │ │ 2 │

├───────────┼────────────────┴───────┐ ├─────────┤

│ 32 │ Filler │ │ 4 │

├───────────┼────────────────────────┤ ├─────────┤

│ 36 │ Current of record type │ │ 4 │

├───────────┼────────────────────────┴──────────────────────────────┐ ├─────────┤

│ 4I │ Pointer │ │ 8 │

├───────────┼─ - - - - - - - - - - -─┬── - - - - - - - - - - - - - ─┘ ├─────────┤

│ 4I │ Address of entry │ │ 4 │

│ │ in dummy record │ │ │

├───────────┼────────────────────────┼──────────────┐ ├─────────┤

│ 44 │ │ Disp. in │ │ 2 │

│ │ │ DBOMP record │ │ │

├───────────┤ └──────────────┼──────────┐ ├─────────┤

│ 46 │ │ PTR type │ │ 1 │

├───────────┤ └──────────┼────┐ ├─────────┤

│ 47 │ │ │ ← Filler │ 1 │

├───────────┼──┴────┤ ├─────────┤

│ │ O 1 pointer entry for each │ │ │

│ │ │ │ │

│ │ O pointer established for │ │ │

│ │ │ │ │

│ │ O the CA-IDMS/DB record type │ │ │

│ ├───┤ ├─────────┤

│ │ end-of-pointer entries │ │ │

│ │ indicator PTR type = FF (HEX) │ │ 8 │

└───────────┴───┴────────────────┴─────────┘

The IMBS macro generates a CA-IDMS/DB logical record buffer from which the
bridge program constructs the DBOMP logical record. The size of this buffer is
equivalent to the size of the largest CA-IDMS/DB record described in the file table.

Assembling and linking IMBSTAB: You can reassemble IMBSTAB as often as
you like. This allows you to change control information and accommodate the
requirements of multiple DBOMP applications. The information most likely to vary is
the program name, the usage mode, the name of the record for which RACN is to be
maintained, and the CATALR option (VSE/ESA only).

Each time you change any input statements, do the following:

1. Submit all of the IMBS input statements.

2. Link edit IMBSTAB to the library containing IMBSBRDG.

�� For the JCL you use to assemble and link edit the IMBSTAB module, see
Chapter 5, “Using the Transparency as a Bridge to CA-IDMS/DB.”

The following flowchart illustrates IMBSTAB assembly and linkage.

Chapter 3. Transparency Programs and Macros 3-11

3.2 Output from IMBS macro — IMBSTAB

3.2.1 IMBSTAB error messages

Error messages that are issued during the assembly of the IMBSTAB customized
bridge program are called MNOTES. An MNOTE appears in the source code listing
directly below the input statement to which it applies.

Note: The line number of an MNOTE appears on the Assembler Diagnostics and
Statistics page of the Assembler output listing.

MNOTEs (and their descriptions) are as follows:

INCORRECT USAGE MODE SPECIFIED

There is an invalid usage mode in the USAGE= parameter of the control state-
ment.

SET SPECIFIED OUT OF SEQUENCE

A set identification statement is not in numeric sequence by the set number
parameter.

SUBSCHEMA NOT SPECIFIED

The SUBSCH= parameter is missing from the control statement.

SET TABLE LIMIT EXCEEDED

The number of sets defined in the IMBS macro has been exceeded.

3-12 CA-IDMS DBOMP Transparency

3.2 Output from IMBS macro — IMBSTAB

UNRECOGNIZED KEYWORD PARAMETER

The Assembly program has encountered an unrecognizable keyword parameter.

You must correct input statements that are flagged by MNOTES, then resubmit the
statements to the IMBS macro for assembly of IMBSTAB. Repeat the process until
all user input statements are free of errors.

The error-detection capabilities of the IMBS macro are limited, and it is recommended
that you check all input statements for errors not covered by MNOTES. In particular,
check:

The subschema name
File and record type names

 File types
 Linkage options
 Pointer displacement

CA-IDMS/DB set names

If errors exist in the above values and are not detected when you generate and
assemble IMBSTAB, the bridge program will encounter discrepancies between infor-
mation requested by the calling program and information supplied by IMBSTAB. The
results are unpredictable.

Chapter 3. Transparency Programs and Macros 3-13

3.3 Sample IMBS and IMBSTAB

3.3 Sample IMBS and IMBSTAB

Sample input to IMBS: The following is a sample of statements input to the IMBS
macro.

 IMBS SYSTEM=DBMP,SUBSCH=IMBSSUBS

 IMBS SET=(I1,ITEM-STRUCTURE)

 IMBS SET=(I2,ITEM-WHERE-USED)

 IMBS SET=(I3,WORK-ROUTING)

 IMBS SET=(I4,ITEM-ROUTING)

 IMBS RECNAME=(ITEMFLE,ITEM-MASTER),TYPE=M,KEYL=5,LRECL=68

 IMBS POINTER=(I1,X,1)

 IMBS POINTER=(I1,N,1I)

 IMBS POINTER=(I2,N,14)

 IMBS POINTER=(I4,N,18)

 IMBS POINTER=(I4,P,22)

 IMBS RECNAME=(PRODSTR,PROD-STRUCTURE),TYPE=C,KEYL=5,LRECL=36

 IMBS POINTER=(I1,O,1)

 IMBS POINTER=(I1,N,5)

 IMBS POINTER=(I2,O,9)

 IMBS POINTER=(I2,N,13)

 IMBS POINTER=(I2,P,17)

 IMBS RECNAME=(WORKCTR,WORK-CENTER),TYPE=M,KEYL=5,LRECL=32

 IMBS POINTER=(I1,X,1)

 IMBS POINTER=(I3,N,1I)

 IMBS POINTER=(I3,P,14)

 IMBS RECNAME=(ROUTING,ROUTINGS),TYPE=C,KEYL=I,LRECL=84

 IMBS POINTER=(I4,O,1)

 IMBS POINTER=(I4,N,5)

 IMBS POINTER=(I3,O,9)

 IMBS POINTER=(I3,N,13)

 IMBS POINTER=(I3,P,17)

 IMBS END

 END

Sample output from IMBS: The following is a sample IMBSTAB source listing,
the output from the IMBS macro.

3-14 CA-IDMS DBOMP Transparency

3.3 Sample IMBS and IMBSTAB

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

 1 IMBS SYSTEM=DBMP,SUBSCH=IMBSSU

IIIIII 2+IMBSTAB CSECT

IIIIII 47FI EIII IIIII 3+ BC 15,I(,14)

IIIII4 IIIIII2I 4+ DC A(IMBSCNTL)

IIIII8 5C5CC9D4C2E24IE3 5+ DC C'WWIMBS TABLE V12.IWW'

 6+W

IIII2I 7+IMBSCNTL DS ID

IIII2I C4C2D4D7 8+ DC CL4'DBMP'

IIII24 IIIII298 9+ DC A(R1)

IIII28 IIIII3FI 1I+ DC A(BUFFER)

IIII2C IIIII148 11+ DC A(SETABLE)

IIII3I IIIII19I 12+ DC A(PTRTAB)

IIII34 C9D4C2E26ID9C5C3 13+ DC CL16'IMBS-RECORD'

IIII44 C9D4C2E2D7D9D6C3 14+ DC CL8'IMBSPROC'

IIII4C C9D4C2E2E2E4C2E2 15+ DC CL8'IMBSSUBS'

IIII54 C9C4D4E2C4C2D4D7 16+ DC CL8'IDMSDBMP'

IIII5C C9E3C5D46ID4C1E2 17+ DC CL16'ITEM-MASTER'

IIII6C IIIIIIF5 18+ DC A(SSCIDBCM+38-1)

IIII7I 19+ DS ID

IIII7I 2I+SSCTRL DS ICL2II

IIII7I 4I4I4I4I4I4I4I4I 21+PGMNAME DC CL8' '

IIII78 F1F4FIFI 22+ERRSTAT DC C'14II'

IIII7C IIIIIIII 23+DBKEY DC F'I'

IIII8I 4I4I4I4I4I4I4I4I 24+RECNAME DC CL16' '

IIII9I 4I4I4I4I4I4I4I4I 25+AREANAME DC CL16' '

IIIIAI 4I4I4I4I4I4I4I4I 26+ERRORSET DC CL16' '

IIIIBI 4I4I4I4I4I4I4I4I 27+ERRORREC DC CL16' '

IIIICI 4I4I4I4I4I4I4I4I 28+ERRAREA DC CL16' '

IIIIDI 29+SSCIDBCM DS IF

IIIIDI IIIIIIIIIIIIIIII 3I+IDBMSCOM DC 25F'I'

III134 IIIIIIII 31+DIRDBKEY DC F'I'

III138 32+DBSTATUS DS ICL7

III138 4I4I 33+DBSTMTCD DC CL2' '

III13A 4I4I4I4I4I4I 34+DBSTATCD DC CL5' ',CL1' '

III14I IIIIIIII 35+RECOCCUR DC F'I'

III144 IIIIIIII 36+DMLSEQ DC F'I'

III148 37+SETABLE DS ID

 38 W

 39 IMBS SET=(I1,ITEM-STRUCTURE)

III148 C9E3C5D46IE2E3D9 4I+SET1 DC CL16'ITEM-STRUCTURE'

 41 IMBS SET=(I2,ITEM-WHERE-USED)

III158 C9E3C5D46IE6C8C5 42+SET2 DC CL16'ITEM-WHERE-USED'

 43 IMBS SET=(I3,WORK-ROUTING)

III168 E6D6D9D26ID9D6E4 44+SET3 DC CL16'WORK-ROUTING'

 45 IMBS SET=(I4,ITEM-ROUTING)

III178 C9E3C5D46ID9D6E4 46+SET4 DC CL16'ITEM-ROUTING'

 47 W

 48 IMBS RECNAME=(ITEMFLE,ITEM-MAS

III188 FFFFFFFF 49+ DC F'-1'

 5I+W

III19I 51+PTRTAB DS ID

Chapter 3. Transparency Programs and Macros 3-15

3.3 Sample IMBS and IMBSTAB

III19I IIIIIIIIIIIIIIII 52+ DC 16XL16'FF'

 53+W

III29I 54+FTABLE DS ID

III29I FFFFFFFF 55+ DC F'-1'

III294 IIII 56+ DC H'I'

III296 FFFF 57+ DC H'-1'

III298 58+R1 DS IF

III298 IIIII2FI 59+ DC A(R2)

III29C C9E3C5D4C6D3C5 6I+ DC CL7'ITEMFLE'

III2A3 D4 61+ DC C'M'

III2A4 C9E3C5D46ID4C1E2 62+ DC CL16'ITEM-MASTER'

III2B4 III5 63+ DC H'5'

III2B6 II44 64+ DC H'68'

III2B8 IIIIIIIIIIIIIIII 65+ DC 2F'I'

 66 IMBS POINTER=(I1,X,1)

III2CI IIIII19I 67+ DC A(PTRTAB+16W(I1-1))

III2C4 IIII 68+ DC AL2(1-1)

III2C6 E7 69+ DC CL1'X'

III2C7 4I 7I+ DC CL1' '

 71 IMBS POINTER=(I1,N,1I)

III2C8 IIIII19I 72+ DC A(PTRTAB+16W(I1-1))

III2CC III9 73+ DC AL2(1I-1)

III2CE D5 74+ DC CL1'N'

III2CF 4I 75+ DC CL1' '

 76 IMBS POINTER=(I2,N,14)

III2DI IIIII1AI 77+ DC A(PTRTAB+16W(I2-1))

III2D4 IIID 78+ DC AL2(14-1)

III2D6 D5 79+ DC CL1'N'

III2D7 4I 8I+ DC CL1' '

 81 IMBS POINTER=(I4,N,18)

III2D8 IIIII1CI 82+ DC A(PTRTAB+16W(I4-1))

III2DC II11 83+ DC AL2(18-1)

III2DE D5 84+ DC CL1'N'

III2DF 4I 85+ DC CL1' '

 86 IMBS POINTER=(I4,P,22)

III2EI IIIII1CI 87+ DC A(PTRTAB+16W(I4-1))

III2E4 II15 88+ DC AL2(22-1)

III2E6 D7 89+ DC CL1'P'

3-16 CA-IDMS DBOMP Transparency

3.3 Sample IMBS and IMBSTAB

III2E7 4I 9I+ DC CL1' '

 91 W

 92 IMBS RECNAME=(PRODSTR,PROD-STR

III2E8 FFFFFFFF 93+ DC F'-1'

III2EC II44 94+ DC H'68'

III2EE FFFF 95+ DC H'-1'

III2FI 96+R2 DS IF

III2FI IIIII348 97+ DC A(R3)

III2F4 D7D9D6C4E2E3D9 98+ DC CL7'PRODSTR'

III2FB C3 99+ DC C'C'

III2FC D7D9D6C46IE2E3D9 1II+ DC CL16'PROD-STRUCTURE'

III3IC III5 1I1+ DC H'5'

III3IE II24 1I2+ DC H'36'

III31I IIIIIIIIIIIIIIII 1I3+ DC 2F'I'

 1I4 IMBS POINTER=(I1,O,1)

III318 IIIII19I 1I5+ DC A(PTRTAB+16W(I1-1))

III31C IIII 1I6+ DC AL2(1-1)

III31E D6 1I7+ DC CL1'O'

III31F 4I 1I8+ DC CL1' '

 1I9 IMBS POINTER=(I1,N,5)

III32I IIIII19I 11I+ DC A(PTRTAB+16W(I1-1))

III324 III4 111+ DC AL2(5-1)

III326 D5 112+ DC CL1'N'

III327 4I 113+ DC CL1' '

 114 IMBS POINTER=(I2,O,9)

III328 IIIII1AI 115+ DC A(PTRTAB+16W(I2-1))

III32C III8 116+ DC AL2(9-1)

III32E D6 117+ DC CL1'O'

III32F 4I 118+ DC CL1' '

 119 IMBS POINTER=(I2,N,13)

III33I IIIII1AI 12I+ DC A(PTRTAB+16W(I2-1))

III334 IIIC 121+ DC AL2(13-1)

III336 D5 122+ DC CL1'N'

III337 4I 123+ DC CL1' '

 124 IMBS POINTER=(I2,P,17)

III338 IIIII1AI 125+ DC A(PTRTAB+16W(I2-1))

III33C II1I 126+ DC AL2(17-1)

III33E D7 127+ DC CL1'P'

III33F 4I 128+ DC CL1' '

 129 W

 13I IMBS RECNAME=(WORKCTR,WORK-CEN

III34I FFFFFFFF 131+ DC F'-1'

III344 II24 132+ DC H'36'

III346 FFFF 133+ DC H'-1'

III348 134+R3 DS IF

III348 IIIII39I 135+ DC A(R4)

III34C E6D6D9D2C3E3D9 136+ DC CL7'WORKCTR'

III353 D4 137+ DC C'M'

III354 E6D6D9D26IC3C5D5 138+ DC CL16'WORK-CENTER'

III364 III5 139+ DC H'5'

III366 II2I 14I+ DC H'32'

III368 IIIIIIIIIIIIIIII 141+ DC 2F'I'

 142 IMBS POINTER=(I1,X,1)

III37I IIIII19I 143+ DC A(PTRTAB+16W(I1-1))

III374 IIII 144+ DC AL2(1-1)

III376 E7 145+ DC CL1'X'

III377 4I 146+ DC CL1' '

Chapter 3. Transparency Programs and Macros 3-17

3.3 Sample IMBS and IMBSTAB

 147 IMBS POINTER=(I3,N,1I)

III378 IIIII1BI 148+ DC A(PTRTAB+16W(I3-1))

III37C III9 149+ DC AL2(1I-1)

III37E D5 15I+ DC CL1'N'

III37F 4I 151+ DC CL1' '

 152 IMBS POINTER=(I3,P,14)

III38I IIIII1BI 153+ DC A(PTRTAB+16W(I3-1))

III384 IIID 154+ DC AL2(14-1)

III386 D7 155+ DC CL1'P'

III387 4I 156+ DC CL1' '

 157 W

 158 IMBS RECNAME=(ROUTING,ROUTINGS

III388 FFFFFFFF 159+ DC F'-1'

III38C II2I 16I+ DC H'32'

III38E FFFF 161+ DC H'-1'

III39I 162+R4 DS IF

III39I IIIII3E8 163+ DC A(R5)

III394 D9D6E4E3C9D5C7 164+ DC CL7'ROUTING'

III39B C3 165+ DC C'C'

III39C D9D6E4E3C9D5C7E2 166+ DC CL16'ROUTINGS'

III3AC IIII 167+ DC H'I'

III3AE II54 168+ DC H'84'

III3BI IIIIIIIIIIIIIIII 169+ DC 2F'I'

 17I IMBS POINTER=(I4,O,1)

III3B8 IIIII1CI 171+ DC A(PTRTAB+16W(I4-1))

III3BC IIII 172+ DC AL2(1-1)

III3BE D6 173+ DC CL1'O'

III3BF 4I 174+ DC CL1' '

 175 IMBS POINTER=(I4,N,5)

III3CI IIIII1CI 176+ DC A(PTRTAB+16W(I4-1))

III3C4 III4 177+ DC AL2(5-1)

III3C6 D5 178+ DC CL1'N'

III3C7 4I 179+ DC CL1' '

 18I IMBS POINTER=(I3,O,9)

III3C8 IIIII1BI 181+ DC A(PTRTAB+16W(I3-1))

III3CC III8 182+ DC AL2(9-1)

III3CE D6 183+ DC CL1'O'

III3CF 4I 184+ DC CL1' '

 185 IMBS POINTER=(I3,N,13)

III3DI IIIII1BI 186+ DC A(PTRTAB+16W(I3-1))

III3D4 IIIC 187+ DC AL2(13-1)

III3D6 D5 188+ DC CL1'N'

III3D7 4I 189+ DC CL1' '

 19I IMBS POINTER=(I3,P,17)

III3D8 IIIII1BI 191+ DC A(PTRTAB+16W(I3-1))

III3DC II1I 192+ DC AL2(17-1)

III3DE D7 193+ DC CL1'P'

III3DF 4I 194+ DC CL1' '

 195 W

 196 IMBS END

III3EI FFFFFFFF 197+ DC F'-1'

III3E4 II54 198+ DC H'84'

III3E6 FFFF 199+ DC H'-1'

III3E8 2II+R5 DS IF

III3E8 C5D5C44B 2I1+ DC CL4'END.'

III3FI 2I2+BUFFER DS ID

III3FI IIIIIIIIIIIIIIII 2I3+ DC XL148'I'

III484 C5D5C44B 2I4+ DC CL4'END.'

 2I5 END

3-18 CA-IDMS DBOMP Transparency

3.4 IMBSPROC database procedure

3.4 IMBSPROC database procedure

IMBSPROC, supplied in source and object form on the CA-IDMS/DBOMP Transpar-
ency installation tape, is a database procedure. This procedure moves pointers of
current records (that participate in the sets described in IMBSTAB) from the
subschema table to a CA-IDMS/DB dummy record. The bridge program BINDs the
dummy record to the IMBSTAB pointer table.

Integration of IMBSPROC into the bridge program: Integration of
IMBSPROC into the bridge program is as follows:

■ When a DBOMP program issues a retrieval or update request, the bridge program
issues a GET of the dummy record before:

– Moving the CA-IDMS/DB record to the CA-IDMS/DB logical record buffer

or

– Returning the DBOMP record to the database

■ When the bridge program issues a GET of the dummy record, CA-IDMS/DB calls
IMBSPROC. IMBSPROC places currency information (pointers) in the dummy
record.

■ IMBSPROC moves pointers for the sets identified in the IMBSTAB set table from
the subschema table to the dummy record and cancels the GET command issued
to CA-IDMS/DB.

■ IMBSPROC returns the updated dummy record to the bridge program.

■ The bridge program proceeds to move the pointers for the requested record from
the dummy record into the DBOMP file work area, placing them as specified in
IMBSTAB.

Note: To protect the integrity of the CA-IDMS/DB database, pointers are not
returned with record data to the database when a write function has been
requested.

What you need to do: The bridge program and IMBSPROC logic is transparent to
the calling program. You must, however:

■ Define the dummy record in the schema

■ Include the dummy record in any subschemas that bridged programs use, thereby
making it available to IMBSPROC and IMBSBRDG

In the schema RECORD description that describes the dummy record, include a CALL
statement that directs CA-IDMS/DB to call IMBSPROC before GETting the dummy
record.

For example, see this sample COBOL RECORD description:

Chapter 3. Transparency Programs and Macros 3-19

3.4 IMBSPROC database procedure

record name is imbs-record.

record id is 799.

location mode is direct.

within bill-of-matrl area.

call imbsproc before get.

I5 imbs-pointers occurs n times.

1I imbs-pointer pic x(4) occurs 4 times.

Code the RECORD description paragraph as shown in the sample, changing the values
for RECORD NAME, RECORD ID, and AREA name as necessary. Supply a value
for n (in the 05-level OCCURS statement) that is less than or equal to the value speci-
fied in the SETLMT clause of the IMBS macro control statement.

3-20 CA-IDMS DBOMP Transparency

3.5 IMBSBRDG program module

3.5 IMBSBRDG program module

IMBSBRDG is the CA-IDMS/DBOMP Transparency Assembler program module that
replaces the DBOMP runtime executable code. Specifically, it replaces:

■ The BM$PIO root module

■ The AP$SEQ module

■ All FILEORG modules

■ The routines generated by the MFSQ, FILE, and CF$RT macros

IMBSBRDG interface between applications and CA-IDMS/DB: IMBSBRDG
is an interface between application programs and CA-IDMS/DB, and simulates IBM
bill-of-materials systems (BOMP, DBOMP, CFMS). IMBSBRDG is linked at runtime
with IMBSTAB, CA-IDMS/DB, and the DBOMP application program, and appears to
CA-IDMS/DB as an application program.

Note: CA-IDMS/DBOMP Transparency does not include operating system and
input/output interfaces, and does not issue any messages to the console.

IMBSBRDG simulates the DBOMP environment by:

■ Converting DBOMP retrieval or update macros and process indicators to
CA-IDMS/DB commands

■ Converting CA-IDMS/DB records to DBOMP records, using information supplied
by IMBSTAB.

After converting the DBOMP command and the object record, IMBSBRDG returns the
requested data and processing information to the calling program.

3.5.1 Converting DBOMP calls to CA-IDMS/DB statements

The IMBSBRDG program module simulates DBOMP processing by converting
DBOMP calls to CA-IDMS/DB statements. IMBSBRDG uses its process indicator
table to make the conversion. The executing program:

■ Examines the process indicator (found in the work area prefix of the object
record)

■ Searches the process indicator table for the name of the IMBSBRDG routine that
issues the equivalent CA-IDMS statement

■ Passes control to the appropriate IMBSBRDG routine, which performs the
requested retrieval or update function

IMBSBRDG routines: The following table describes the IMBSBRDG routines.

The IMBSBRDG module supplied on the installation tape includes comments for each
of these routines as well as for the routines that move pointers and data to and from
the DBOMP file work area.

Chapter 3. Transparency Programs and Macros 3-21

3.5 IMBSBRDG program module

Name of routine What it does

HOUSEKEEPING

(performed on each entry
to BM$PIO and
AP$SEQ)

 ■ Saves registers

 ■ Establishes addressability

■ Sets sequential flag for entry to AP$SEQ

MAINLINE Routes all calls to IMBSBRDG:

■ On first call, passes control to INITIALIZATION
routine

■ For all subsequent calls, passes control to
PROCESS INDICATOR routine and to FILENAME
VERIFICATION routine

INITIALIZATION

(performed on initial
entry to IMBSBRDG)

■ Establishes location of IMBSTAB tables and loads
their addresses

■ Signs on to CA-IDMS/DB

■ BINDs CA-IDMS/DB dummy record to pointer
table in IMBSTAB

■ BINDs all record types to CA-IDMS/DB logical
record buffer in IMBSTAB

■ READYs the CA-IDMS/DB database areas in the
specified usage mode

■ Initializes the general CA-IDMS/DB call

 ■ Initializes registers

FILENAME VERIFICA-
TION

Equates the DBOMP file name to a CA-IDMS/DB
record type name

PROCESS INDICATOR Equates the DBOMP process indicator to a
CA-IDMS/DB function

MOVE RECORD ■ For retrieval functions, builds the expected DBOMP
record from the CA-IDMS/DB logical record buffer
and passes the record to the named DBOMP file
work area

■ For update functions, extracts the data from the
DBOMP file work area and passes the data to the
CA-IDMS/DB logical record buffer (pointers are not
moved from the work area to the CA-IDMS/DB
logical record buffer)

MRAN MRKY Performs random record retrieval

DIRECT READ Performs direct record retrieval

MODIFY RECORD Updates in place master and chain file records

3-22 CA-IDMS DBOMP Transparency

3.5 IMBSBRDG program module

Name of routine What it does

SEQUENTIAL READ Performs processing requested by GE$T

START KEY Performs processing requested by ST$KY

START DA Performs processing requested by ST$DA

OPEN ■ Determines location mode of CA-IDMS/DB record
type that corresponds to named DBOMP file

■ Determines, for future MGET processing, whether
CA-IDMS/DB record type belongs to an indexed set

■ Determines if RACN function is permitted for
named DBOMP file and if so returns file control
record to named DBOMP file work area

CLOSE Returns file control record to CA-IDMS/DB database
and closes database

EXPAND Moves disk address to named work area prefix from
indicated sending field

COMPRESS Moves disk address from named work area prefix to
indicated receiving field

3.5.2 Converting records retrieved from CA-IDMS/DB

The IMBSBRDG program converts retrieved CA-IDMS/DB records to DBOMP
records, reconstructs CA-IDMS/DB records from updated DBOMP records, and returns
the updated records to the database.

Converting records: To convert records retrieved from the CA-IDMS/DB data-
base, IMBSBRDG performs the following tasks:

■ Reads the CA-IDMS/DB record into the CA-IDMS/DB logical record buffer

■ Retrieves the CA-IDMS/DB dummy record updated by IMBSPROC

■ Moves the pointers for the requested record from the CA-IDMS/DB dummy
record to the DBOMP file work area (using displacement information in
IMBSTAB to determine where to place each pointer)

■ Moves segments of data from the CA-IDMS/DB logical record buffer to the
DBOMP file work area, accounting for the pointers already in place

Pointer displacement information is used in determining the size of each data
segment moved:

– The size of the first data segment moved equals the number of bytes between
the beginning of the DBOMP logical record and the first pointer

– The size of the second segment moved equals the number of bytes between
the first and second pointers

Chapter 3. Transparency Programs and Macros 3-23

3.5 IMBSBRDG program module

– This process continues until all of the data in the CA-IDMS/DB logical record
buffer has been moved into the file work area, where the simulated DBOMP
record is available for processing by the calling program

Reconstructing and returning records: To reconstruct updated DBOMP records
and return them to the CA-IDMS/DB database, CA-IDMS/DBOMP Transparency per-
forms the following tasks:

■ Moves segments of data from the updated DBOMP logical record in the file work
area to the CA-IDMS/DB logical record buffer.

Pointer displacement information is used in determining the size of each data
segment:

– The size of the first segment moved equals the number of bytes between the
beginning of the DBOMP record and the first pointer

– The size of the second segment moved equals the number of bytes between
first and second pointers

– This process continues until all data in the DBOMP logical record (except
pointers) has been moved to the CA-IDMS/DB logical record buffer.

■ Issues a MODIFY command to CA-IDMS/DB, returning the updated record in the
buffer to the database.

The following two figures illustrate how IMBSBRDG moves data between the
CA-IDMS logical record buffer and the work area of the DBOMP file.

Transfer from IDMS to DBOMP: The following figure shows the transfer of data
from the CA-IDMS/DB logical record buffer to the work area of the DBOMP file.
Note that when the transfer of data takes place, the pointers already have been moved
from the CA-IDMS/DB dummy record to the DBOMP file work area.

3-24 CA-IDMS DBOMP Transparency

3.5 IMBSBRDG program module

Transfer from DBOMP to IDMS: This figure shows the transfer of data from the
work area of the DBOMP file to the CA-IDMS/DB logical record buffer. Note that
pointers are not returned with record data to the CA-IDMS/DB logical record buffer.

Chapter 3. Transparency Programs and Macros 3-25

3.5 IMBSBRDG program module

Values returned to the calling program: IMBSBRDG returns values to the
calling program, as shown in the following table.

Values returned to: Description of values returned

Work area prefix ■ A hexadecimal value in the error-byte field, returned
after a DBOMP request:

– 0000 — Requested function performed success-
fully

– 0400 — File name not found in IMBSTAB

– 0004 — Process indicator not found in process
indicator table

– 0008 — Invalid record at disk address (MDIR and
CDIR process indicators)

– FFFF — Failure in IMBSBRDG program

■ Current disk address, returned when a successful
random read (MRAN or MRKY) has been performed

■ Current record key, returned when a successful
direct read (MDIR, MRDR, CDIR, or CRDR) has
been performed

3-26 CA-IDMS DBOMP Transparency

3.5 IMBSBRDG program module

Values returned to: Description of values returned

Work area of the
DBOMP file

A DBOMP logical record; after successful execution of a
retrieval request

Currency field in
IMBSEQ tables

Current address of a record retrieved by a successful exe-
cution of the ST$DA or ST$KY macro

Chapter 3. Transparency Programs and Macros 3-27

3.6 IMBSEQ macro

 3.6 IMBSEQ macro

IMBSEQ is the Assembler macro that replaces:

■ The MF$SQ macro

■ All FI$LE macros

■ The CR$RT macro in DBOMP Assembler application programs

IMBSEQ generates tables containing information to support the sequential processing
requested by GET, PUT ST$DA, and ST$KY macros in bridged programs. You
can place this macro anywhere in the application program, however, it must appear
only once.

��─── IMBSEQ (file-name,set-name,end-of-data-address) ────────────────────────�B

IMBSEQ
A required constant that identifies the macro; you can code it anywhere after
column 1.

file-name
Specifies the seven-character name of the DBOMP file. One file-name entry must
exist for every master file referenced in the bridged program.

set-name
Specifies the name of the set as it appears in the subschema.

end-of-data-address
Specifies the end-of-data address for the accompanying file-name. One end-of-
data-address entry must exist for every file-name.

IMBSEQ builds one sequential table for each file named in the macro. Each table
contains the following values:

■ The DBOMP file name

■ A last-file flag

■ The name of the area for which an area sweep is performed or the name of the
index used for sequential access

■ The address of the end-of-file routine to which program control is to branch when
the end of the file is reached

■ The currency field updated after each sequential retrieval

Sequential file table layout: The following figure illustrates the layout of the
sequential file table.
┌───────────┬──┬─────────┐

│ Displace- │ Field Contents │ Field │

│ ment │ │ Length │

├───────────┼─────────────────────────────────┬──────────────────────────────────────┼─────────┤

│ I │ DBOMP file name │ │ 7 │

├───────────┼─────┬───────────────────────────┘ ├─────────┤

│ 7 │ │ ← Flag │ 1 │

├───────────┼─────┴──┐ ├─────────┤

│ 8 │ Area name or index name │ │ 16 │

├───────────┼────────────────────────┬───────────────────────────────────┘ ├─────────┤

│ 24 │ Address of EOF routine │ │ 4 │

├───────────┼────────────────────────┤ ├─────────┤

│ 28 │ Current db-key │ │ 4 │

└───────────┴────────────────────────┴───┴─────────┘

3-28 CA-IDMS DBOMP Transparency

3.6 IMBSEQ macro

The IMBSEQ macro requires entries for only those files that are processed sequentially
by the DBOMP program. In IMBSTAB, you must describe all files entered in this
macro and referenced in the program.

The macros that generate the PL/I and COBOL interfaces include the logic necessary
to generate the tables required for sequential processing. The layout for these tables is
the same as for those generated by the IMBSEQ macro.

�� For information on the PL/I interface, see Appendix A, “PL/I Considerations.” For
information on the COBOL interface, see Appendix B, “COBOL Considerations.”

Chapter 3. Transparency Programs and Macros 3-29

3-30 CA-IDMS DBOMP Transparency

Chapter 4. Converting DBOMP to CA-IDMS/DB

4.1 Converting data . 4-4
4.2 Converting DBOMP load and maintenance programs 4-7

4.2.1 DBOMP process indicators and corresponding DML 4-8
4.2.2 DBOMP commands and corresponding DML 4-12
4.2.3 Sequence of logic in converted programs 4-14

4.3 Converting DBOMP retrieval and update programs 4-16
4.4 DBOMP error codes that have CA-IDMS/DB equivalents 4-17

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-1

4-2 CA-IDMS DBOMP Transparency

This chapter provides detailed instructions for converting DBOMP data and programs
to CA-IDMS/DB.

Conversion steps: To convert a DBOMP system to CA-IDMS/DB, you must:

1. Design the CA-IDMS/DB database. Use DBOMP file organization modules, I/O
modules, and file description modules as design aids and then discard them; these
modules are not integrated into a CA-IDMS/DB runtime system.

Note: The Mixed Page Group Binds Allowed feature may not be used with
CD-IDMS/DBOMP Transparency.

�� For information on this step, refer to CA-IDMS Database Design Guide.

2. Convert and transfer existing data from the DBOMP database to the
CA-IDMS/DB database.

3. Convert DBOMP load, maintenance, and retrieval/update programs to
CA-IDMS/DB.

Cautions on the duplication of logic: Because of the basic differences between
CA-IDMS/DB processing and DBOMP processing, don't expect CA-IDMS/DB to
duplicate DBOMP logic in all applications. This applies particularly to RACN and
chain count routines. Since CA-IDMS/DB handles these functions internally, it is
usually not necessary to maintain the routines in converted programs.

However, should these routines be required, you must integrate the necessary logic into
converted programs. For example, if RACN is implemented in the converted program,
you must establish a file control record for each applicable master file and insert the
program logic to update it.

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-3

4.1 Converting data

 4.1 Converting data

To convert and transfer data from a DBOMP database to a CA-IDMS/DB database,
you write a conversion program that issues calls to DBOMP and to IDMSDBLU.

�� For information on IDMSDBLU, see the FASTLOAD section in CA-IDMS
Utilities.

What the conversion program does: A conversion program does the following:

■ Describes each DBOMP master file and equivalent CA-IDMS/DB record type (see
the information on occurrence descriptors in the FASTLOAD section in CA-IDMS
Utilities)

■ Describes sets, set owners, and record keys to be established on the CA-IDMS/DB
database (see the information on owner descriptors in the FASTLOAD section in
CA-IDMS Utilities)

■ Issues a DBOMP call to retrieve a record from the parent master file

■ Reformats the retrieved DBOMP parent master record into a CA-IDMS/DB record

■ Issues a call to IDMSDBLU to store the reformatted record on the CA-IDMS/DB
database

■ Establishes set names and record keys

■ Issues a DBOMP command for a primary chain chase of the product-structure
(internal) chain file anchored in the retrieved parent master record

■ Reformats each subordinate master record, as it is retrieved, into a CA-IDMS/DB
record

■ Issues a call to IDMSDBLU for each reformatted subordinate master record to
store the record on the CA-IDMS/DB database and to connect the record to the
appropriate set(s)

■ Uses the record key for the parent master record to return it to the user work area;
this occurs when the end of the internal chain file is reached

■ Issues a DBOMP command for a primary chain chase to retrieve the subordinate
master records associated with the parent master record in external relationships

■ Reformats each subordinate master record as it is retrieved

■ Issues a call to IDMSDBLU to store each reformatted subordinate master record
on the CA-IDMS/DB database and to connect the record to the appropriate set(s)

■ Repeats all of the preceding tasks until the entire parent master file has been read;
this occurs when the end of the external chain file is reached

Note: It is recommended that you retain low-level codes when you transfer DBOMP
data to a CA-IDMS/DB database. If you want to retain sequential dependen-
cies, convert and transfer the DBOMP data as outlined above and describe the
record as being stored via its owner, as described under the clause via set-name

4-4 CA-IDMS DBOMP Transparency

4.1 Converting data

set of the record statement of Schema statements in the Database Adminis-
tration manual. To keep all occurrences of a given record type in physical
sequence, they must be stored via a system owned index.

COBOL example of conversion program: The following is an example of a
COBOL program that converts DBOMP data to CA-IDMS/DB records and loads them
into the CA-IDMS/DB database.

data division.

working-storage section.

I1 dbomp-item.

 I3 item-pi.

 I3 item-key.

I1 ca-idms/db-item Refer to CA-IDMS Utilities

I3 part-no. for information on occurrence descriptors.

I1 dbomp-prodstr.

I1 idms-prodstr.

I1 dbomp-workctr.

I1 idms-workctr.

 I3 work-no.

I1 dbomp-routing.

I1 idms-routing.

I1 owner-1. Refer to CA-IDMS Utilities

I3 set-1. for information on owner descriptors.

 I3 key-1.

I1 owner-2.

 I3 set-2.

 I3 key-2.

procedure division.

call 'bmpeof' using dbomp-item end-job.

next-item.

call 'bmpget' using dbomp-item.

reformat dbomp-item, giving idms-item

call 'idmsdblu' using idms-item.

move part-no to key-1.

move 'item-struct' to set-1.

move 'where-used' to set-2.

next-structure.

end-of-chain go to first-route.

call 'chase' using anlnk nxlnk addnf dbomp-prodstr dbomp-item.

reformat dbomp-prodstr, giving idms-prodstr

move part-no to key-2.

call 'idmsdblu' using idms-prodstr owner-1 owner-2.

go to next-structure.

first-route.

move key-1 to item-key.

move 'mran' to item-pi.

call 'bmpcall' using dbomp-item.

move 'item-routing' to set-1.

move 'work-routing' to set-2.

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-5

4.1 Converting data

next-route.

end-of-chain go to next-item.

call 'chase' using anlnk nxlnk addnf dbomp-routing dbomp-workctr.

reformat dbomp-routing, giving idms-routing

call 'idmsdblu' using idms-routing owner-1 owner-2.

reformat dbomp-workctr, giving idms-workctr

call 'idmsdblu' using idms-workctr.

go to next-route.

4-6 CA-IDMS DBOMP Transparency

4.2 Converting DBOMP load and maintenance programs

4.2 Converting DBOMP load and maintenance programs

You must convert all DBOMP load and maintenance programs to CA-IDMS/DB
before you can run them against the CA-IDMS/DB database. Converting these pro-
grams involves:

■ Inserting the necessary CA-IDMS/DB DML control statements to prepare the data-
base for processing

■ Replacing all DBOMP calls, process indicators, and associated logic with
CA-IDMS/DB DML statements and associated logic

Steps for converting load and maintenance programs: Follow the eight steps
presented below to convert DBOMP Assembler, PL/I, and COBOL load and mainte-
nance programs. To obtain the proper record names and descriptions, set names, area
names, and subschema names, consult the dictionary reports produced by the
IDMSRPTS utility (refer to CA-IDMS Utilities).

1. Remove all program references to work areas and work area prefixes.

2. Provide a CA-IDMS/DB Communications Block for the program, as shown in the
figure following this procedure.

3. Allocate space in program variable storage for each CA-IDMS/DB record type to
be referenced in the converted program. The structure of each record type is
described in the data dictionary Subschema Record Description Listing, the
SUBREC report generated by the IDMSRPTS utility (refer to CA-IDMS Utilities).

4. Issue an @MODE macro (Assembler only).

5. BIND the subschema and all record types to be referenced in the program.

6. READY those database areas that will be accessed by the program; one READY
statement can be issued for all areas, or each area can be READYed explicitly.

7. Replace each DBOMP CA$LL or BMPCALL with a CA-IDMS DML statement
equivalent to the function requested by the process indicator in the DBOMP work
area prefix. Alter the associated logic as necessary to conform with
CA-IDMS/DB programming requirements. The section following this list of
guidelines shows the DBOMP process indicators (and commands) and their equiv-
alent CA-IDMS DML statements and associated logic.

8. Check the CA-IDMS/DB error status after every call to CA-IDMS/DB (see 4.4,
“DBOMP error codes that have CA-IDMS/DB equivalents”).

Note: Maintain low-level codes in converted structural maintenance programs.
You can incorporate this logic into user programs as a subroutine that is
invoked following routines that add records to the CA-IDMS/DB database.
For an example of this low-level code logic, see Appendix C, “Sample
Application and Procedures”; you can apply this example to user mainte-
nance programs.

Communications block from step 2 of conversion:

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-7

4.2 Converting DBOMP load and maintenance programs

 Length Suggested
Field Type (in bytes) Initial Value

 ┌────────────────┐

 W3 1 8 3 Program name Alphanumeric 8 Program name

 ├────────────┬───┘

 3 9 12 3 Error-status indicator Alphanumeric 4 '14II'

 ├────────────┤

 3 13 16 3 Db-key Binary 4 (fullword) IIII

 ├────────────┴────────────────┐

 3 17 32 3 Record name Alphanumeric 16 Spaces

 ├─────────────────────────────┤

 3 33 48 3 Area name Alphanumeric 16 Spaces

 ├─────────────────────────────┤

3 49 64 3 Error set name Alphanumeric 16 Spaces

 ├─────────────────────────────┤

3 65 8I 3 Error record name Alphanumeric 16 Spaces

 ├─────────────────────────────┤

3 81 96 3 Error area name Alphanumeric 16 Spaces

 ├──────────────┬─┬────────────┴───────────┐

 3 97 ┌┘┌┘ 196 3 IDBMSCOM array Alphanumeric 1II

 ├────────────┬┘ └─────────────────────────┘

 3 197 2II 3 Direct db-key Binary 4 (fullword) IIII

 └────────────┘

 ┌────────────────┐

3 2I1 2I7 3 Reserved for system Alphanumeric 7 Spaces

 ├───────┬────────┘

3 2I8 3 Filler . . . 1 . . .

 ├───────┴────┐

 3 2I9 212 3 Record occurrence Binary 4 (fullword) IIII

 ├────────────┤

 3 213 216 3 DML sequence Binary 4 (fullword) IIII

 └────────────┘

W word aligned

4.2.1 DBOMP process indicators and corresponding DML

Replacing DBOMP process indicators with equivalent CA-IDMS DML statements is
part of program conversion (see the steps for converting programs). On the following
pages, DBOMP process indicators are shown with their equivalent DML statements
(and associated logic, where appropriate). DML statements are shown in this order:

 ■ Assembler

 ■ COBOL

 ■ PL/I

 OPEN

��─── @READY ─┬─ ALL ───┬───�B

└─ AREA= ─┘

��─── READY ──�B

��─── READY ─┬─────────┬─ ; ──�B

└─ AREA= ─┘

 CLOS

��─── @FINISH ──�B

��─── FINISH ───�B

��─── FINISH; ──�B

MADD and MCRT

��─── @STORE REC= ──�B

��─── STORE ──�B

��─── STORE RECORD; ──�B

Associated logic: Build record in user work area and move key to required field
before STORE.

4-8 CA-IDMS DBOMP Transparency

4.2 Converting DBOMP load and maintenance programs

MDEL and MTAG

��─── @ERASE ─┬─ REC ───────┬─ ,REC= ───�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE ──┬────────────────────────────┬──────────────────────────────────�B

└─┬─ PERMANENT ─┬─ MEMBERS ──┘

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

Associated logic: For MTAG, insert user logic to accomplish tagging.

 CADD

��─── @STORE REC= ──�B

��─── STORE ──�B

��─── STORE RECORD; ──�B

Associated logic: Move parent master record key to program variable storage; FIND
CALC parent master record; build 'chain' record; move subordinate master key to
program variable storage; FIND CALC subordinate master record; CONNECT subordi-
nate master record to appropriate set; perform low-level code routine; set membership
for product-structure relationship is MM.

CADD (subordinate master)

��─── @STORE REC= ──�B

��─── STORE ──�B

��─── STORE RECORD; ──�B

Associated logic: Move parent master record key to program variable storage; move
subordinate master record key to program variable storage; build 'chain' record in
program variable storage; FIND CALC parent master record; FIND CALC subordinate
master record; STORE 'chain' record; NOTE: set membership for subordinate master
record is assumed MA.

CADD (no subordinate master)

��─── @STORE REC= ──�B

��─── STORE ──�B

��─── STORE RECORD; ──�B

Associated logic: Move master record key to program variable storage; build 'chain'
record; FIND CALC master record; STORE 'chain' record.

 CDLS

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-9

4.2 Converting DBOMP load and maintenance programs

��─── @ERASE ─┬─ REC ───────┬─ ,REC= ───�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE ──┬────────────────────────────┬──────────────────────────────────�B

└─┬─ PERMANENT ─┬─ MEMBERS ──┘

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

Associated logic: Move master record key to program variable storage; FIND CALC
master record; OBTAIN NEXT record within set; check error status; loop until record
is found or end of set reached; delete found record.

 CDLM

��─── @ERASE ─┬─ REC ───────┬─ ,REC= ───�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE ──┬────────────────────────────┬──────────────────────────────────�B

└─┬─ PERMANENT ─┬─ MEMBERS ──┘

├─ SELECTIVE ─┤

└─ ALL ───────┘

��─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────�B

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

Associated logic: Move master record to program variable storage; FIND CALC
master record; OBTAIN NEXT record within set; delete 'chain' record; check error
status; loop until end of set.

 CCSR

��─── @MODIFY REC= ───�B

��─── MODIFY ───�B

��─── MODIFY RECORD; ───�B

Associated logic: Move subordinate master record key to program variable storage;
OBTAIN CALC subordinate master record; change subordinate master record key to
desired value; MODIFY subordinate master record.

 CEQL

��─── @STORE REC= ──�B

��─── STORE ──�B

��─── STORE RECORD; ──�B

4-10 CA-IDMS DBOMP Transparency

4.2 Converting DBOMP load and maintenance programs

Associated logic: Move parent master record key to program variable storage; FIND
CALC parent master record; OBTAIN NEXT record within set; move key of obtained
record to program variable storage for parent master record; FIND CALC record;
STORE retrieved ('chain') record.

 CCHG

��─── @MODIFY REC= ───�B

��─── MODIFY ───�B

��─── MODIFY RECORD; ───�B

Associated logic: Move master record key to program variable storage; FIND CALC
master record; MODIFY record as required.

CFIN and CEND: Have no IDMS equivalents

Associated logic: If end of set is desire, FIND OWNER within set.

 SADD

��─── @CONNECT REC=,SET= ───�B

��─── CONNECT TO ───�B

��─── CONNECT RECORD SET; ──�B

Associated logic: Move master record key to program variable storage; FIND CALC
master record; OBTAIN NEXT record within set; move subordinate record key to
master record key in program variable storage; FIND CALC master record;
CONNECT found master record to appropriate set.

 SDEL

��─── @DISCON REC=,SET= ──�B

��─── DISCONNECT FROM ──�B

��─── DISCONNECT RECORD SET; ───�B

Associated logic: FIND CALC record; OBTAIN NEXT record within set; DISCON-
NECT retrieved record.

CCRT: See information for CADD

 MRKY

��─── @FIND CALC,REC= ───�B

��─── FIND CALC ──�B

��─── FIND CALC RECORD; ──�B

 MRAN

��─── @OBTAIN CALC,REC= ──�B

��─── OBTAIN CALC ──�B

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-11

4.2 Converting DBOMP load and maintenance programs

��─── OBTAIN CALC RECORD; ──�B

 MDIR

��─── @OBTAIN DBKEY= ───�B

��─── OBTAIN DB-KEY IS ───�B

��─── OBTAIN DBKEY; ──�B

 MRDR

��─── @FIND DBKEY= ───�B

��─── FIND DB-KEY IS ───�B

��─── FIND DBKEY; ──�B

 MUPD

��─── @MODIFY REC= ───�B

��─── MODIFY ───�B

��─── MODIFY RECORD; ───�B

MWRT: Has no CA-IDMS/DB equivalent

 CDIR

��─── @OBTAIN DBKEY= ───�B

��─── OBTAIN DB-KEY IS ───�B

��─── OBTAIN DBKEY ───�B

 CUPD

��─── @MODIFY REC= ───�B

��─── MODIFY ───�B

��─── MODIFY RECORD; ───�B

Associated logic: OBTAIN record before issuing MODIFY.

CWRT: Has no CA-IDMS/DB equivalent

CMPR and EXPN: Have no CA-IDMS/DB equivalents; addresses are not com-
pressed in CA-IDMS/DB

4.2.2 DBOMP commands and corresponding DML

Replacing DBOMP commands with equivalent CA-IDMS DML statements is part of
program conversion (see the previous list of guidelines for conversion). On the fol-
lowing pages DBOMP commands are shown with their equivalent DML statements
(and associated logic, where appropriate). DML statements are shown in this order:

 ■ Assembler

 ■ COBOL

4-12 CA-IDMS DBOMP Transparency

4.2 Converting DBOMP load and maintenance programs

 ■ PL/I

CHA$E BMPCHASE: See associated logic

Associated logic: FIND CALC set owner record; OBTAIN NEXT record (member)
within set; check for the end of the set; repeat OBTAIN NEXT and check error status
until the end of the set.

 GE$T BMPGET

��─── @OBTAIN NEXT, ─┬─ SET= ──┬──�B

└─ AREA= ─┘

��─── OBTAIN NEXT WITHIN ───�B

��─── OBTAIN NEXT ─┬─ SET ──┬─ ; ───�B

└─ AREA ─┘

 PU$T BMPPUT

��─── @MODIFY REC= ───�B

��─── MODIFY ───�B

��─── MODIFY RECORD; ───�B

 ST$KY BMPSTKY

��─── @OBTAIN,REC=,SET=,USING= ───�B

��─── OBTAIN WITHIN USING ──�B

��─── OBTAIN RECORD SET USING; ───�B

Associated logic: Obtains a record in an indexed set using a symbolic key.

 ST$DA BMPSTDA

��─── @OBTAIN DBKEY=DIRCTKY,REC= ───�B

��─── OBTAIN DB-KEY IS DIRECTKY ──�B

��─── OBTAIN DBKEY DIRCTKY; ──�B

Associated logic: Record retrieved in physical sequential order by symbolic key.
(DIRCTKY)

CA$LL BMPCALL: See process indicator equivalents

Commands having no equivalents: These DBOMP commands have no
CA-IDMS/DB equivalents:

 ■ BM$WA

 ■ MSG

 ■ TY$PE

 ■ MO$VE

 ■ EQ$RG

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-13

4.2 Converting DBOMP load and maintenance programs

 ■ BM$DS

 ■ MF$SQ

 ■ CF$RT

 ■ FI$LE

 ■ CGE$T

 ■ CPU$T

 ■ BM$FO

 ■ BMPFO

 ■ EO$F

 ■ BMPEOF

 ■ BM$RACN

 ■ BMPRACN

 ■ BM$OFAD

 ■ BMPOFFAD

4.2.3 Sequence of logic in converted programs

The general sequence of logic in the converted load and maintenance programs should
be as follows:

1. Read input data or transaction record.

2. Format the input data into the CA-IDMS/DB record work area. (The COBOL
code to accomplish this is generated automatically.)

3. Establish necessary currencies.

4. Issue the appropriate DML Assembler macro:

■ @STORE — Add a record occurrence to the database.

■ @ERASE — Delete a record occurrence from the database.

■ @MODIFY — Alter a record key or sequence field.

■ @CONNECT — Add a record occurrence to a set occurrence.

■ @DISCONNECT — Remove a record occurrence from a set occurrence.

5. Check the status code returned by CA-IDMS/DB (see 4.4, “DBOMP error codes
that have CA-IDMS/DB equivalents”).

Note: Check the CA-IDMS/DB status after every call to CA-IDMS/DB to determine
whether the requested function was performed. The status codes returned to
the program may indicate program errors, or they may be tested by program
logic to determine subsequent program action.

4-14 CA-IDMS DBOMP Transparency

4.2 Converting DBOMP load and maintenance programs

�� Look for status codes and their meanings in CA-IDMS DML Reference - COBOL
and CA-IDMS DML Reference - PL/I.

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-15

4.3 Converting DBOMP retrieval and update programs

4.3 Converting DBOMP retrieval and update programs

The final task in conversion to CA-IDMS/DB is converting DBOMP retrieval and
update programs.

Steps for converting retrieval and update programs: Follow the eight steps
presented below to convert DBOMP Assembler, PL/I, and COBOL load and mainte-
nance programs to CA-IDMS/DB. To obtain the proper record names and
descriptions, set names, area names, and subschema names, consult the data dictionary
reports produced by the IDMSRPTS utility (refer to CA-IDMS Utilities).

1. Remove all program references to DBOMP file work areas and work area pre-
fixes.

2. Provide a CA-IDMS/DB Communications Block for the program (see the same
step under 4.2, “Converting DBOMP load and maintenance programs,” in this
chapter).

3. Allocate space in the CA-IDMS/DB program variable storage for each
CA-IDMS/DB record type to be referenced in the converted program. The struc-
ture of each record type is described in the dictionary Subschema Record
Description Listing, or SUBREC report. For information on SUBREC, see
IDMSRPTS in CA-IDMS Utilities.

4. Issue an @MODE macro (Assembler only).

5. BIND the subschema and all record types to be referenced in the program.

6. READY those database areas that will be accessed by the program; one READY
statement can be issued for all areas, or each area can be READYed explicitly.

7. Convert each DBOMP command and accompanying process indicator to an equiv-
alent DML command. Alter the program logic associated with the DBOMP
command as necessary to conform with CA-IDMS/DB programming requirements.
Refer to the syntax shown under 4.2, “Converting DBOMP load and maintenance
programs” for the CA-IDMS DML statements that are equivalent to DBOMP
commands and process indicators.

8. Check the status code returned by CA-IDMS/DB after every call to CA-IDMS/DB
(see the table under 4.4, “DBOMP error codes that have CA-IDMS/DB
equivalents”).

4-16 CA-IDMS DBOMP Transparency

4.3 Converting DBOMP retrieval and update programs

4.4 DBOMP error codes that have CA-IDMS/DB equivalents

DBOMP
Code

DBOMP
P.I.

IDMS
Status

IDMS Macro Meaning

0400 Any 0308 Any Invalid record
type

0200 Addition 1211 @STORE No space in area

0008 File read 0326 @FIND/@OBTAIN Record not
found

0008 File read 0302 @FIND/@OBTAIN Db-key not
within page
range for speci-
fied record

0004 Any xx63 — Invalid function

0001 Addition 1205 @STORE Duplicate record

0001 Deletion 0230 @ERASE Record occur-
rence is owner
of nonempty set

END CHA$E 0307
@OBTAIN NEXT,

SET=

AREA=
End of set or
area

Chapter 4. Converting DBOMP to CA-IDMS/DB 4-17

4-18 CA-IDMS DBOMP Transparency

Chapter 5. Using the Transparency as a Bridge to
CA-IDMS/DB

5.1 Preparing DBOMP Assembler programs . 5-4
5.2 Executing DBOMP Assembler programs . 5-5

5.2.1 Assembling and executing under OS/390 5-5
5.2.2 Assembling and executing under VSE/ESA 5-8

5.3 Diagnosing errors . 5-11
5.3.1 What to look for when errors occur during program processing . . . 5-11
5.3.2 What to look for when inaccurate data is returned 5-12
5.3.3 Where to find values during debugging 5-12

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-1

5-2 CA-IDMS DBOMP Transparency

You can use the CA-IDMS/DBOMP Transparency as a bridge between your existing
unconverted DBOMP application program and a database that has been converted from
DBOMP to CA-IDMS/DB. Using the transparency involves these activities:

■ Preparing DBOMP programs for processing

■ Executing the programs

■ Locating and diagnosing program errors that occur during processing

This chapter explains the procedures you use to prepare and execute Assembler pro-
grams and for diagnosing errors in bridged Assembler, PL/I, and COBOL programs.

�� For information on preparing and executing PL/I programs, see Appendix A, “PL/I
Considerations.” For information on preparing and executing COBOL programs, see
Appendix B, “COBOL Considerations.”

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-3

5.1 Preparing DBOMP Assembler programs

5.1 Preparing DBOMP Assembler programs

The amount of preparation necessary to make a DBOMP Assembler program accept-
able to the transparency varies based on the functions performed by the program.
Before submitting a DBOMP Assembler application program via the transparency,
make the following changes:

■ Remove any MFSQ, FILE, or CF$RT macros from the program. Replace the
macros with the IMBSEQ macro.

Note: The IMBSEQ macro must appear only once in the program.

■ Remove any program logic that depends on RACN support for more than one file
(record type). IMBSBRDG ignores program reference to file control records for
files other than the one designated in IMBSTAB as using RACN.

■ If the program issues any allowable CA-IDMS/DB verbs, insert the proper calls to
IMBSBRDG (see Chapter 2, “The Transparency Environment”). Use
IDMS-REQUEST as the work area file name.

■ If any retrieval or update process indicators other than those supported by the
transparency are used in the program, replace them with process indicators that are
supported (see Chapter 2, “The Transparency Environment”).

5-4 CA-IDMS DBOMP Transparency

5.2 Executing DBOMP Assembler programs

5.2 Executing DBOMP Assembler programs

Perform these steps to execute a DBOMP Assembler program using the transparency:

1. Assemble IMBSTAB by submitting the user customizing parameters to the IMBS
macro. (Omit this step and the next step if an existing version of IMBSTAB is
compatible with the application program.) The third and fourth steps are required
only for sequential processing of DBOMP files.

2. Link edit IMBSTAB.

3. Assemble the IMBSEQ macro with the IMBSASMB interface macro, specifying
the user-defined parameters for the IMBSEQ macro.

4. Link edit the IMBSEQ macro.

5. Reassemble and link edit the DBOMP application program, including
IMBSBRDG, IMBSTAB, IMBSEQ, and IDMS.

Note: Programs running under OS/390 need only be reassembled if any of the
changes detailed above have been made; programs running under
VSE/ESA must be reassembled whether or not any of these changes have
been made, unless the programs exist in the relocatable library.

6. Execute the DBOMP application program. The program is now bridged to
CA-IDMS/DB.

The JCL you use to execute each of these tasks is provided on the following pages.

5.2.1 Assembling and executing under OS/390

OS/390/central version: The following is the JCL for assembling and executing
DBOMP Assembler programs using the transparency, in an OS/390 operating system,
under the central version. Assemble/Execute DBOMP Assembler program using
the transparency (IMBSBRDG) (OS/390)

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-5

5.2 Executing DBOMP Assembler programs

//ASMTABLE EXEC PGM=ASMGASM

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=idms.maclib,DISP=SHR

// DD DSN=imbs.srclib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(2,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(2,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(2,2))

//SYSPUNCH DD DSN=&&object,UNIT=disk,DISP=(NEW,PASS),

// SPACE=(8I,(4II,4I))

//SYSIN DD DSN=idms.srclib(imbstab),DISP=SHR

//LKEDTTAB EXEC PGM=IEWL

//SYSPRINT DD SYSOUT=A

//LIB DD DSN=idms.loadlib,DISP=SHR

//SYSLIN DD DSN=&&asmot,DISP=(OLD,DELETE)

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(2I,5))

//SYSLIB DD DUMMY

//SYSLMOD DD DSN=imbs.loadlib(imbstab),DISP=SHR

//ASMPROG EXEC ASMGCL

//ASM.SYSLIB DD

// DD DSN=cfms.maclib,DISP=SHR

//ASM.SYSIN DD W

DBOMP program statements

 END

//LKED.SYSLMOD DD DSN=user.loadlib(pgmname),DISP=SHR

//LKED.IDMSLIB DD DSN=idms.loadlib,DISP=SHR

//LKED.IMBSLIB DD DSN=imbs.loadlib,DISP=SHR

 INCLUDE IDMSLIB(IDMS)

 INCLUDE IMBSLIB(IMBSBRDG,imbstab)IMBSEQ

//RUNPROG EXEC PGM=pgmname

//STEPLIB DD DSN=user.loadlib,DISP=SHR

 DD DSN=idms.dba.loadlib,DISP=SHR

 DD DSN=idms.loadlib,DISP=SHR

additional JCL for application program, as required

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSCTL DD DSN=idms.sysctl,DISP=SHR

//SYSIDMS DD W

DMCL=dmcl-name

Other SYSIDMS parameters, as appropriate

/W

program input, as required

Include as many STEPLIB DD statements as there are libraries containing program,
CA-IDMS/DBOMP Transparency, and CA-IDMS/DB load modules.

TIP: If you are going to use the transparency frequently under the central version,
consider making IMBSPROC and any applicable subschemas resident.

Note: Assemble and link IMBSEQ as described previously and include it on the link
edit of the application.

Note: For complete information on optional SYSIDMS runtime parameters, refer to
the CA-IDMS Database Administration.

5-6 CA-IDMS DBOMP Transparency

5.2 Executing DBOMP Assembler programs

OS/390/local mode: To run the same job in local mode, substitute the following
statements after the //STEPLIB statement:

//STEPLIB DD DSN=user.loadlib,DISP=SHR

// DD DSN=imbs.loadlib,DISP=SHR

// DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,PASS),

// UNIT=tape

//userdd DD DSN=database,DISP=(OLD,PASS)

//SYSIDMS DD W

DMCL=dmcl-name

additional SYSIDMS parameters, as appropriate

/W

additional database file assignments, as required

additional JCL for application program, as required

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

program input, as required

Explanation of variables:

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-7

5.2 Executing DBOMP Assembler programs

CA-IDMS/DBOMP Transparency database procedure

idms.maclib Dataset name for CA-IDMS/DB macro library

imbs.srclib Dataset name for the transparency or CA-IDMS/DB
source library containing IMBS customizing macro

disk Symbolic device name for disk unit

&&object Temporary dataset name for IMBSTAB object module

imbs.srclib(imbstab) Dataset name for user parameters input to IMBS cus-
tomizing macro

idms.dba.loadlib Dataset name for the load library containing the DMCL
and database name table load modules

idms.loadlib Dataset name for the load library containing CA-IDMS
executable modules

imbs.loadlib Dataset name for the transparency or CA-IDMS/DB
load library containing transparency modules

imbstab Dataset name for link edited output from IMBS macro

cfms.maclib Dataset name for user macro library

user.loadlib Dataset name for load library containing DBOMP
application program

pgmname Name of DBOMP application program

dmcl-name Name of the CA-IDMS DMCL describing the
CA-IDMS files used by the transparency

sysjrnl DD name for CA-IDMS/DB journal file

idms.tapejrnl Dataset name for CA-IDMS/DB journal file

tape Symbolic device name for CA-IDMS/DB journal file

userdb DD name for CA-IDMS/DB database file

user.userdb Dataset name for CA-IDMS/DB database file

sysctl Dataset name for the SYSCTL file

5.2.2 Assembling and executing under VSE/ESA

VSE/ESA/central version: The following is the JCL for assembling and executing
DBOMP Assembler programs using the transparency, in a VSE/ESA operating system,
under the central version. Note that you can use either an UPSI statement or a
SYSCTL statement to indicate central version. Assemble/Execute DBOMP Assem-
bler program using the transparency (IMBSBRDG) (VSE/ESA)

5-8 CA-IDMS DBOMP Transparency

5.2 Executing DBOMP Assembler programs

// ASSGN SYSPCH,X'281'

// OPTION DECK

CATALR imbstab

// EXEC ASSEMBLY

user input parameters for IMBS customizing macro

 END

/W

// MTC REW,X'281'

// ASSGN SYSIPT,X'281'

// EXEC MAINT

/W

// OPTION CATAL

PHASE pgmname

// EXEC ASSEMBLY

program statements

 END

/W

 INCLUDE IMBSBRDG

INCLUDE imbstab

 INCLUDE IDMS

// EXEC LNKEDT

/&

// JOB EXECPGM

// UPSI 1

// DLBL SYSIDMS,'#SYSIPT',I,SD

DMCL=dmcl-name

Other SYSIDMS runtime parameters, as appropriate

/W

additional JCL for application program, as required

// EXEC pgmname

program input, as required

/W

TIP: If you are going to use the transparency frequently under the central version,
consider making IMBSPROC and any applicable subschemas resident.

VSE/ESA/local mode: To run the same job in local mode, substitute the following
JCL after the // JOB EXECPGM statement:

// ASSGN sysII9,X'281'

// ASSGN sysI1I,X'137'

// DLBL sysI1I,'database',,DA

// EXTENT sysI1I,444444,1,76,1776

additional database assignments, as required

additional JCL for application program, as required

// EXEC pgmname

// DLBL SYSIDMS,'#SYSIPT',I,SD

DMCL=dmcl-name

Other SYSIDMS runtime parameters, as appropriate

program input, as required

/W

Explanation of variables:

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-9

5.2 Executing DBOMP Assembler programs

pgmname Name of DBOMP application program

imbstab Dataset name for link edited output from IMBS cus-
tomizing macro

sys009 Logical unit assignment for CA-IDMS/DB journal file

281 Physical device assignment for CA-IDMS/DB journal
file

sys010 Logical unit assignment for CA-IDMS/DB database file

137 Physical device assignment for CA-IDMS/DB database
file

database Dataset name for CA-IDMS/DB database file

444444 Serial number of disk containing CA-IDMS/DB data-
base file

76 Relative track where CA-IDMS/DB database file begins

1776 Number of tracks used by CA-IDMS/DB database file

dmcl-name Name of the CA-IDMS DMCL describing the
CA-IDMS files used by the transparency

5-10 CA-IDMS DBOMP Transparency

5.3 Diagnosing errors

 5.3 Diagnosing errors

Since the CA-IDMS/DBOMP Transparency does not issue diagnostic messages, you
must locate and diagnose errors that occur during the execution of a bridged DBOMP
program.

Note: If the bridge system aborts:

■ OS/390 issues an S0C2 program check message

■ VSE/ESA issues a PRIVILEGED OPERATION EXCEPTION message

5.3.1 What to look for when errors occur during program processing

Error-byte field: Check the error-byte field in the work area prefix of each file
processed by the program. The contents of the error-byte field indicate:

■ Whether the error occurred during IMBSBRDG processing

■ Which file was being handled at the time the error occurred

If the error-byte field of a work area prefix contains a value other than '0000', the error
occurred while that file was being handled by IMBSBRDG.

�� For information on error-byte values, see 3.5, “IMBSBRDG program module.”

CA-IDMS/DB communications block: Check the CA-IDMS/DB communications
block (SSCTRL) in IMBSTAB. If an error occurred during CA-IDMS/DB processing,
the IDMS Communications Block will contain an error status code other than '0000'
and the name of the record last involved in the operation that resulted in the error.

�� For a complete listing of CA-IDMS/DB error codes, refer to CA-IDMS Messages
and Codes.

Process indicators: Check which process indicator in the work area prefix was
being handled at the time that the error occurred.

IMBSBRDG generates this
process indicator:

In response to:

MGET GE$T

MPUT PU$T

STKY ST$KY

STDA ST$DA

Chapter 5. Using the Transparency as a Bridge to CA-IDMS/DB 5-11

5.3 Diagnosing errors

Table generation and accuracy: Verify that the IMBSEQ, IMBSCOBL, or
IMBSPL1 table has been generated and is accurate if any sequential processing func-
tions are requested by the program.

Subschema and DMCL module: Verify that the subschema name known to
CA-IDMS/DB is available, and that the DMCL module is available.

IMBS parameters: Verify the accuracy of the parameters input to the IMBS cus-
tomizing macro.

5.3.2 What to look for when inaccurate data is returned

If your program runs successfully but returns inaccurate data to the work area, make
sure:

■ The CA-IDMS/DB subschema record descriptions agree with the DBOMP file
descriptions

■ The file table in IMBSTAB contains correct file types and pointer displacements

■ The CA-IDMS/DB files are loaded properly

5.3.3 Where to find values during debugging

The following table lists the registers that point to the location of transparency compo-
nents containing values pertinent to the debugging process.

Register Points to:

R5 IMBSTAB

R6 Active work area prefix

R7 Active file and file table in IMBSTAB

R8 Active record name

R11 CA-IDMS/DB logical record buffer in IMBSTAB

R12 Beginning of active IMBSBRDG routine

R14 Instruction following a branch to FORCEDMP; important only when
the message program check S0C2 (OS/390) or PRIVILEGED
OPERATION EXCEPTION (VSE/ESA) has been issued

5-12 CA-IDMS DBOMP Transparency

 Appendix A. PL/I Considerations

A.1 Transparency support for DBOMP PL/I commands A-4
A.2 IMBSPL1 interface macro . A-6
A.3 DBOMP PL/I program preparation and execution A-7

Appendix A. PL/I Considerations A-1

A-2 CA-IDMS DBOMP Transparency

This appendix provides you with additional information necessary to use DBOMP PL/I
programs with CA-IDMS/DBOMP Transparency.

Except as noted here, CA-IDMS/DBOMP Transparency bridges DBOMP PL/I pro-
grams in the same manner it bridges DBOMP Assembler programs.

The topics covered in this appendix are:

■ CA-IDMS/DBOMP Transparency support of DBOMP PL/I commands

■ IMBSPL1 interface macro

■ DBOMP PL/I program preparation and execution

Appendix A. PL/I Considerations A-3

A.1 Transparency support for DBOMP PL/I commands

A.1 Transparency support for DBOMP PL/I commands

The transparency's support of DBOMP PL/I commands parallels that of DBOMP
Assembler macros. The following table shows DBOMP PL/I commands and their
interpretation by the CA-IDMS/DBOMP Transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I
command

CA-IDMS/DBOMP Transparency interpretation of
command

OP$EN The first call to OP$EN causes IMBSBRDG to open the entire
CA-IDMS/DB database and prepare it for processing: BINDs
are issued for the run unit and all record types described in the
subschema, and database areas are READYed. Th transpar-
ency returns the file control record for the file for which
RACN has been specified in IMBSTAB. Subsequent calls to
OP$EN are ignored once the database has been opened.

CLO$E The first call to CLO$E causes IMBSBRDG to close all areas
in the CA-IDMS/DB database by issuing a FINISH command.
Subsequent calls to CLO$E are ignored once the database has
been closed. If any command other than CLO$E is issued
after the first CLO$E, the transparency automatically reopens
the CA-IDMS/DB database and processes the
command; a subsequent CLOSE causes the transparency to
close the database again.

CA$LL The work area prefix for the named file is passed to
IMBSBRDG, which interprets the process indicator contained
in the work area prefix and performs the requested function.
See Chapter 2, “The Transparency Environment” for those
process indicators supported by the transparency.

GE$T IMBSBRDG retrieves the first record in the named file and
returns it to the work area. Subsequent calls to GE$T using
the same file cause IMBSBRDG to retrieve records in logical
sequential order from that point if the record type is not
indexed. When an end-of-file condition is detected, control is
passed to the routine specified for the file in the EO$F
command (discussed below).

EO$F IMBSBRDG handles EO$F in the same manner as does
DBOMP, but obtains the necessary file information from the
module generated by the IMBSPL1 interface macro (see
below) rather than from the module generated by the DBOMP
PL$BM macro. A call to EO$F must specify the end-of-file
routines in the same sequence as the corresponding files are
entered in the IMBSPL1 macro.

A-4 CA-IDMS DBOMP Transparency

A.1 Transparency support for DBOMP PL/I commands

DBOMP PL/I
command

CA-IDMS/DBOMP Transparency interpretation of
command

ST$KY IMBSBRDG retrieves a record by the key specified in the
work area prefix for the named file and returns the record to
the work area. The currency for the file is set at the retrieved
record. Subsequent GE$T commands for the file retrieve
records in logical sequential order from that point if the record
type is not indexed. Note that the transparency support of
logical sequential processing assumes the use of an index.

ST$DA IMBSBRDG retrieves a record by the disk address specified in
the work area prefix for the named file and returns the record
to the work area. The currency for the file is set at the
retrieved record. Subsequent GE$T commands for the file
retrieve records in logical sequential order from that point if
the record type is indexed, or in physical sequential order from
that point if the record type is not indexed. Note that the
transparency's support of logical sequential processing assumes
the use of indexing.

PU$T IMBSBRDG writes back to the CA-IDMS/DB database the
last record retrieved by a GE$T command. Chain address
fields (pointers) are not updated or written back to the data-
base.

CHASE The transparency supports this command unconditionally.
Programs that request only the CHASE function need not be
modified before interfacing with the bridge, and should be
linked with the PL$CH macro as indicated in IBM DBOMP
documentation.

BM$OFAD The transparency does not support this command. If a call to
BM$OFAD is encountered by the bridge, no action takes place
and control returns to the calling program.

BM$FO The transparency does not support this command. If a
BM$FO command is encountered, an unresolved external ref-
erence results in the link edit map.

BM$RACN The transparency does not support this command. If a
BM$RACN command is encountered, no action takes place
and control returns to the calling program. The transparency's
maintenance of RACN in PL/I programs is the same as for
Assembler programs.

Appendix A. PL/I Considerations A-5

A.2 IMBSPL1 interface macro

A.2 IMBSPL1 interface macro

The IMBSPL1 interface macro replaces the DBOMP PL$BM macro. This Assembler
macro generates tables containing the information necessary to establish communi-
cation between the DBOMP PL/I program and IMBSBRDG. Also incorporated in
these tables is the information required to support the sequential processing requested
by calls to GET, PUT, ST$KY, and ST$DA.

Syntax: IMBSPL1 macro

��─── IMBSPL1 (file-name, ─┬─ index-set-name ─┬─), ─┬─ YES ─┬─ ; ────────────�B

└─ NOTSEQ ─────────┘ └─ NO ──┘

 Parameters

IMBSPL1
A required constant that identifies the macro; you can code it anywhere after
column 1.

file-name
The seven-character name of the DBOMP master file as specified in the program
work area. You must enter the routines named in the EO$F command in the same
order as you enter the corresponding file names in the IMBSPL1 macro. This
ensures that the address of the proper routine is passed to IMBSBRDG when the
end of a file named in a GE$T command is reached. One file-name entry must be
present for each DBOMP file that is processed.

index-set-name/NOTSEQ
The name of the index set to be used for logical sequential processing; specify
NOTSEQ if the file is not to be processed in logical sequential order. One index-
set-name/NOTSEQ entry must be present for each file-name entry.

YES/NO
The compiler option indicator; specified as follows:

■ YES if the optimizing compiler is used and IMBSPL1 is not identified as an
assembler entry

■ NO if the D- or F-level compiler is used

Note: It is recommended that you name every file on the DBOMP database in one
execution of the IMBSPL1 macro so that this macro does not need to be
assembled and link edited more than once.

Assembling and linking IMBSPL1: To assemble and link-edit IMBSPL1, you
must use SMP/E (OS/390) or MSHP (VSE/ESA). For instructions on using SMP/E
and MSHP, see CA-IDMS Installation — OS/390 or CA-IDMS Installation — VSE/ESA.

A-6 CA-IDMS DBOMP Transparency

A.3 DBOMP PL/I program preparation and execution

A.3 DBOMP PL/I program preparation and execution

The guidelines for preparing a DBOMP PL/I program and executing it using the trans-
parency parallel those detailed for DBOMP Assembler programs in Chapter 5, “Using
the Transparency as a Bridge to CA-IDMS/DB.”

Preparing the PL/I program

■ Remove the PL$BM macro.

■ Remove those DBOMP PL/I commands that are not supported by
CA-IDMS/DBOMP Transparency and modify associated program logic as neces-
sary.

■ Modify the PL/I logic as necessary to conform with CA-IDMS/DBOMP Transpar-
ency specifications for sequential processing and RACN processing.

■ If the program issues any of the allowable CA-IDMS DML statements, insert the
following call to IMBSBRDG, making sure that the CA-IDMS DML statement
argument is available in program variable storage (see Chapter 2, “The Transpar-
ency Environment”):

call ca$ll (argument_name,'end.')

■ If any retrieval or update process indicators except for those supported by
CA-IDMS/DBOMP Transparency (see Chapter 2, “The Transparency
Environment”) are used in the program, replace them with those that are sup-
ported.

Executing the program

■ Assemble and link edit IMBSTAB if a version compatible with the application
does not exist in the load library.

■ Recompile and link edit the DBOMP PL/I program, including IMBSBRDG,
IMBSTAB, IMBSPL1, and CA-IDMS/DB. This step assumes that IMBSPL1 has
been assembled and link edited as discussed above.

Note: You do not need to recompile programs that run under OS/390 unless any
of the changes listed above have been made; you must, however, recom-
pile programs that run under VSE/ESA whether or not any of these
changes have been made, unless the programs exist in the relocatable
library.

■ Submit the DBOMP PL/I program for execution.

Appendix A. PL/I Considerations A-7

A-8 CA-IDMS DBOMP Transparency

 Appendix B. COBOL Considerations

B.1 Transparency support for DBOMP COBOL commands B-4
B.2 IMBSCOBL interface macro . B-7
B.3 DBOMP COBOL program preparation and execution B-8

Appendix B. COBOL Considerations B-1

B-2 CA-IDMS DBOMP Transparency

This appendix provides you with additional information necessary to interface DBOMP
COBOL programs with CA-IDMS/DBOMP Transparency.

Except as noted in this appendix, CA-IDMS/DBOMP Transparency bridges DBOMP
COBOL programs in the same manner as it bridges DBOMP Assembler programs.

The topics covered in this appendix are:

■ CA-IDMS/DBOMP Transparency support of DBOMP COBOL commands

■ IMBSCOBL interface macro

■ DBOMP COBOL program preparation and execution

Appendix B. COBOL Considerations B-3

B.1 Transparency support for DBOMP COBOL commands

B.1 Transparency support for DBOMP COBOL commands

The transparency's support for DBOMP COBOL commands parallels its support for
DBOMP Assembler macros. The following table shows DBOMP COBOL commands
and their interpretation by the transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I
command

CA-IDMS/DBOMP Transparency interpretation of
command

BMPOPEN The first call to BMPOPEN causes IMBSBRDG to open the
entire CA-IDMS/DB database and prepare it for processing:
BINDs are issued for the run unit and all record types
described in the subschema, and database areas are READYed.
The transparency returns the file control record for the file for
which RACN has been specified in IMBSTAB. Subsequent
calls to BMPOPEN are ignored once the database has been
opened.

BMPCLOSE The first call to BMPCLOSE causes IMBSBRDG to close all
areas in the CA-IDMS/DB database by issuing a FINISH
command. Subsequent calls to BMPCLOSE are ignored once
the database has been closed. If any command other than
BMPCLOSE is issued after the first BMPCLOSE, the trans-
parency automatically reopens the CA-IDMS/DB database and
processes the command; a subsequent BMPCLOSE causes the
transparency to close the database again.

BMPCALL The work area prefix for the named file is passed to
IMBSBRDG, which interprets the process indicator contained
in the work area prefix and performs the requested function.
For information on process indicators that are supported by the
transparency, see Chapter 2, “The Transparency
Environment.”

BMPGET IMBSBRDG retrieves the first record in the named file and
returns it to the work area. Subsequent calls to BMPGET
using the same file cause IMBSBRDG to retrieve records in
logical sequential order from that point if the record type is
indexed, or in physical sequential order from that point if the
record type is not indexed. When an end-of-file condition is
detected, control passes to the routine specified for the file in
the BMPEOF command (discussed below).

B-4 CA-IDMS DBOMP Transparency

B.1 Transparency support for DBOMP COBOL commands

DBOMP PL/I
command

CA-IDMS/DBOMP Transparency interpretation of
command

BMPEOF IMBSBRDG handles BMPEOF in the same manner as does
DBOMP, but obtains the necessary file information from the
module generated by the DBOMP CB$BM macro. A call to
BMPEOF must specify the end-of-file routines in the same
sequence as the corresponding files are entered in the
IMBSCOBL macro.

BMPSTKY IMBSBRDG retrieves a record by the key specified in the
work area prefix for the named file and returns the record to
the work area. The currency for the file is set at the retrieved
record. Subsequent BMPGET commands for the file retrieve
records in logical sequential order from that point if the record
type is indexed, or in physical sequential order from that point
if the record type is not indexed. Note that the transparency's
support of logical sequential processing assumes the use of
indexing.

BMPSTDA IMBSBRDG retrieves a record by the disk address specified in
the work area prefix for the named file and returns the record
to the work area. The currency for the file is set at the
retrieved record. Subsequent BMPGET commands for the file
retrieve records in logical sequential order from that point if
the record type is indexed, or in physical sequential order from
that point if the record type is not indexed. Note that the
transparency's support of logical sequential processing assumes
the use of indexing.

BMPPUT IMBSBRDG writes back to the CA-IDMS/DB database the
last record retrieved by a BMPGET command. Chain address
fields (pointers) are not updated or written back to the data-
base.

CHASE The transparency supports this command unconditionally.
Programs that request only the CHASE function need not be
modified before interfacing with the bridge, and should be
linked with the CB$CH macro as indicated in IBM DBOMP
documentation.

BMPOFFAD The transparency does not support this command. If a call to
BMPOFFAD is encountered by the bridge, no action takes
place and control returns to the calling program.

BMPFO The transparency does not support this command. If a
BMPFO statement is encountered, an unresolved external ref-
erence results in the link edit map.

Appendix B. COBOL Considerations B-5

B.1 Transparency support for DBOMP COBOL commands

DBOMP PL/I
command

CA-IDMS/DBOMP Transparency interpretation of
command

BMPRACN The transparency does not support this command. If a
BMPRACN command is encountered, no action takes place
and control returns to the calling program. The transparency's
maintenance of RACN in COBOL programs is the same as for
Assembler programs.

B-6 CA-IDMS DBOMP Transparency

B.2 IMBSCOBL interface macro

B.2 IMBSCOBL interface macro

The IMBSCOBL interface macro replaces the DBOMP CB$BM macro. This Assem-
bler macro generates tables containing the information necessary to establish communi-
cation between the DBOMP COBOL program and IMBSBRDG. Also incorporated in
these tables is the information required to support sequential processing requested by
calls to BMPGET, BMPPUT, BMPSTKY, and BMPSTDA.

Syntax: IMBSCOBL macro

��─── IMBSCOBL (file-name, ─┬─ index-set-name ─┬─) ──────────────────────────�B

└─ NOTSEQ ─────────┘

 Parameters

IMBSCOBL
A required constant that identifies the macro; it can be coded anywhere after
column 1.

file-name
The seven-character name of the DBOMP master file as specified in the program
work area. You must enter the routines named in the BMPEOF command in the
same order as you enter the corresponding file names in the IMBSCOBL macro.
This ensures that the address of the proper routine is passed to IMBSBRDG when
the end of a file named in a BMPGET command is reached. One file-name entry
must be present for every DBOMP file that is processed.

index-set-name/NOTSEQ
The name of the index set to be used for logical sequential processing; specify
NOTSEQ if the file is not to be processed in logical sequential order. One index-
set-name/NOTSEQ entry must be present for each file-name entry.

Note: It is recommended that you name every file on the DBOMP database in one
execution of the IMBSCOBL macro so that this macro does not need to be
assembled and link edited more than once.

Assembling and linking IMBSCOBL: To assemble and link-edit IMBSCOBL,
you must use SMP/E (OS/390) or MSHP (VSE/ESA). For instructions on using
SMP/E and MSHP, SEE CA-IDMS Installation — OS/390 or CA-IDMS Installation —
VSE/ESA.

Appendix B. COBOL Considerations B-7

B.3 DBOMP COBOL program preparation and execution

B.3 DBOMP COBOL program preparation and execution

The guidelines for preparing and executing a DBOMP COBOL program using the
transparency parallel those detailed for DBOMP Assembler programs in Chapter 5,
“Using the Transparency as a Bridge to CA-IDMS/DB.”

Preparing the COBOL program

■ Remove the CB$BM macro.

■ Remove DBOMP COBOL commands that are not supported by
CA-IDMS/DBOMP Transparency, and modify associated program logic as neces-
sary.

■ Modify the COBOL logic as necessary to conform with CA-IDMS/DBOMP
Transparency specifications for sequential processing and RACN processing.

■ If the program issues any of the allowable CA-IDMS DML statements, insert the
following call to IMBSBRDG, making sure that the CA-IDMS DML statement
argument is available in working storage (see Chapter 2, “The Transparency
Environment”):

call 'bmpcall' using argument-name.

■ If any retrieval or update process indicators except for those supported by
CA-IDMS/DBOMP Transparency (see Chapter 2, “The Transparency
Environment”) are used in the program, replace them with those that are sup-
ported.

Executing the program:

■ Assemble and link edit IMBSTAB if a version compatible with the application
does not exist in the load library.

■ Recompile and link edit the DBOMP COBOL program, including IMBSBRDG,
IMBSTAB, IMBSCOBL, and CA-IDMS/DB. This step assumes that IMBSCOBL
has been assembled and link edited as discussed above.

Note: You do not need to recompile programs that run under OS/390 unless any
of the changes listed above have been made; you must, however, recom-
pile programs that run under VSE/ESA whether or not any of these
changes have been made, unless the programs exist in the relocatable
library.

■ Submit the DBOMP COBOL program for execution.

B-8 CA-IDMS DBOMP Transparency

Appendix C. Sample Application and Procedures

C.1 IMBSBILL sample application . C-4
C.2 IMBSMJ01 sample OS/390 JCL . C-6
C.3 IMBSMJ02 sample OS/390 JCL . C-7

Appendix C. Sample Application and Procedures C-1

C-2 CA-IDMS DBOMP Transparency

This appendix contains the following sample application and OS/390 JCL:

■ IMBSBILL sample application — Illustrates the sequence and structure of data-
base access procedures necessary to perform standard bill-of-materials functions
against a CA-IDMS/DB manufacturing database. IMBSBILL is written in ANS
COBOL and issues CA-IDMS/DB COBOL Data Manipulation Language state-
ments requesting database services.

■ IMBSMJ01 sample OS/390 JCL — IMBSMJ01 is a collection of EXEC state-
ments which you can use as a reference when you convert a DBOMP database to
a CA-IDMS/DB database.

■ IMBSMJ02 sample OS/390 JCL — IMBSMJ02 is a collection of EXEC state-
ments which you can use as a reference when you execute DBOMP applications
using the transparency.

Appendix C. Sample Application and Procedures C-3

C.1 IMBSBILL sample application

C.1 IMBSBILL sample application

IMBSBILL functions: IMBSBILL serves two purposes:

■ To aid in the conversion of DBOMP load, maintenance, and retrieval/update pro-
grams to CA-IDMS/DB

■ To serve as a prototype for the development of systems oriented to the manufac-
turing environment

Record types referenced by IMBSBILL: IMBSBILL references these
CA-IDMS/DB record types:

 ■ ITEM-MASTER

 ■ PROD-STRUCTURE

 ■ WORK-CENTER

 ■ ROUTINGS

IMBSBILL retrieves, modifies, adds, and deletes occurrences of each of these record
types. It demonstrates single-level, indented, and summarized explosion and
implosion, and performs a serial retrieval of occurrences of the ITEM-MASTER record
type. IMBSBILL also contains the CA-IDMS/DB logic necessary to implement
RACN, low-level coding, and chain counts.

Database accessed by IMBSBILL: The design for the sample database accessed
by IMBSBILL is shown in the following figure.

C-4 CA-IDMS DBOMP Transparency

C.1 IMBSBILL sample application

IMBSBILL flow of logic:

The general flow of logic in IMBSBILL is as follows:

1. BIND the run unit and all record types

2. Read a transaction

3. Branch to the routine indicated by the transaction code

4. Access the CA-IDMS/DB database using the appropriate DML commands

5. Display the results of the transaction on the printer

6. Repeat the above steps until all transactions have been processed

IMBSBILL code: The following is the code for IMBSBILL.

■ IMBSBILL - The program described here

■ IMBSCHM - The schema IMBSBILL uses

■ IMBDMCL - The DMC IMBSBILL uses

■ IMBSUBS - The subschema IMBSBILL uses

Appendix C. Sample Application and Procedures C-5

C.2 IMBSMJ01 sample OS/390 JCL

C.2 IMBSMJ01 sample OS/390 JCL

Explanation of statements in IMBSMJ01: Each EXEC statement in IMBSMJ01
is a job step. The steps are described in the following table.

Note: Be sure to modify the parameters in the EXECPGM step to suit your installa-
tion requirements.

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Processes the sample DMCL module, IMBSDMCL

LINKDMCL Link edits the assembled output from the DMCL
processor

SUBSCHEM Compiles the sample subschema, IMBSSUBS, and
punches load module

LINKSUB Link edits IMBSSUBS

DMLC Submits the sample COBOL source program,
IMBSBILL, to the CA-IDMS Data Manipulation Lan-
guage compiler

COB Compiles the output from DMLC

LINKCOB Link edits the compiled COBOL program

IDMSRPTS Prints reports from the data dictionary

INITSAMP Initializes the sample database

EXECPGM Executes the sample CA-IDMS/DB application program,
IMBSBILL

C-6 CA-IDMS DBOMP Transparency

C.3 IMBSMJ02 sample OS/390 JCL

C.3 IMBSMJ02 sample OS/390 JCL

Explanation of statements in IMBSMJ02: Each EXEC statement in IMBSMJ02
is a job step. The steps are described in the following table.

Note: Be sure to modify the parameters in the EXECPGM step to suit your installa-
tion requirements.

EXEC statement What happens

ASMCBDG Assembles IMBSTAB

LINKCBDG Link edits IMBSTAB

ASMCOBL Assembles IMBSCOBL interface

LINKCOBL Link edits IMBSCOBL module

DMLC Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA-IDMS Data Manipulator Lan-
guage compiler

COB Compiles output from DMLC

LINKCOB Link edits IMBSDBMP

EXECPGM Executes the sample DBOMP application program,
IMBSDBMP, using the CA-IDMS/DBOMP Transpar-
ency bridge program IMBSBRDG

Appendix C. Sample Application and Procedures C-7

C-8 CA-IDMS DBOMP Transparency

Appendix D. Setting Up CA-IDMS/DBOMP
Transparency under OS/390

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02 D-5
D.1.1 Explanation of EXEC statements in IMBSMJ01 procedure D-5
D.1.2 Customizing IMBSMJ01 . D-6
D.1.3 Explanation of EXEC statements in IMBSMJ02 procedure D-8
D.1.4 Customizing IMBSMJ02 . D-8
D.1.5 Executing IMBSMJ01 and IMBSMJ02 D-9

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 D-1

D-2 CA-IDMS DBOMP Transparency

Object modules: The following table lists the object modules placed into the
CA-IDMS/DB object library during the install.

Source modules: The following table lists the source modules placed into the
CA-IDMS/DB source library during the install.

Load modules: The following table lists the load modules placed in the
CA-IDMS/DB load library during the install.

Module Description

IMBSPROC Database procedure

IMBSBRDG Bridge program

Module Description

IMBSMJ02 JCL for IMBSMJ02 procedure

IMBS Customizing macro

IMBSASMB IMBS Assembler interface macro

IMBSBILL Sample CA-IDMS/DB COBOL manufacturing applica-
tion program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL CA-IDMS/DBOMP Transparency COBOL interface
macro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

IMBSEQ CA-IDMS/DBOMP Transparency Assembler interface
macro

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA-IDMS/DBOMP Transparency PL/I interface macro

IMBSPROC Source code for database procedure object module

IMBSMJ01 JCL for IMBSMJ01 procedure

IMBSSCHM Sample CA-IDMS/DB schema description

IMBSSUBS Sample CA-IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 D-3

Module Description

IMBSBRDG Bridge program

IMBSPROC Database procedure

D-4 CA-IDMS DBOMP Transparency

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

The JCL is shown in the IMBSMJ01 and IMBSMJ02 procedures as they exist in the
source library.

Source library member IMBSMJ01 contains a procedure that compiles the schema,
DMCL, and subschema for the sample database. It then initializes the database and
runs the sample DML program, IMBSBILL.

Member IMBSMJ02 compiles a sample DBOMP program, IMBSDBMP, and
CA-IDMS/DBOMP Transparency, which uses the same database as was set up by
IMBSMJ01.

D.1.1 Explanation of EXEC statements in IMBSMJ01 procedure

The IMBSMJ01 procedure uses the 15 EXEC statements described in the following
table.

Note: You must modify the parameters in the EXEC IMBSMJ01 statement (the last
EXEC statement in the procedure) to suit your installation requirements. For
more information, see D.1.2, “Customizing IMBSMJ01.”

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Processes the sample DMCL module, IMBSDMCL and
punches the load module

LINKDMCL Link edits the assembled output from the DMCL
processor

SUBSCHEM Compiles the sample subschema, IMBSSUBS

LINKSUB Link edits IMBSSUBS

DMLC Submits the sample COBOL source program,
IMBSBILL, to the CA-IDMS Data Manipulation Lan-
guage compiler

COB Compiles the output from DMLC

LINKCOB Link edits the compiled COBOL program

IDMSRPTS Prints reports from the data dictionary

INITSAMP Initializes the sample database

EXECPGM Executes the sample CA-IDMS/DB application program,
IMBSBILL

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 D-5

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

 D.1.2 Customizing IMBSMJ01

You must modify the defaults shown in the EXEC IMBSMJ01 statement (the last JCL
statement) in the IMBSMJ01 procedure. The following JCL shows the exec
IMBSMJ01. Change the items shown in italics to suit your installation requirements.
IMBSMJ01 (OS/390)

//SAMPLE EXEC IMBSMJI1

// PRT='SYSOUT=A',

// UNIT=disk,

// LIB='imbs.loadlib',

// IDMSLIB='idms.loadlib',

// COBLIB='coblib',

// COBSTEP='cob.steplib',

// PGSIZE=2496,

// DISP=CATLG,

// BASE='data.direct',

// IMBSBILL='imbsI13',

// IMBSWORK='IMBSWORK',

// SRCLIB='imbs.srclib',

// IDMSSRC='idms.maclib',

// VOL='VOL=SER=nnnnnn,'

// SYSCTLDS='idms.sysctl',

// IDMSDMCL='cvdmcl',

// MSGDD='dcmsg',

// MSGDSN='idms.ddldcmsg',

// DDLDD='sysddl',

// DDLDSN='idms.sysddl',

// DICTNAME='appldict',

D-6 CA-IDMS DBOMP Transparency

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

Parameter Description

disk Symbolic device name for data dictionary and database
files

imbs.loadlib Dataset name of CA-IDMS/DBOMP Transparency load
library if a load library was allocated in optional
ALLOC step of INSTALL procedure; or dataset name
of CA-IDMS load library if CA-IDMS/DBOMP Trans-
parency load library was not allocated

idms.loadlib Dataset name of CA-IDMS load library

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sample or
user directory

IMBSBILL Dataset name of sample CA-IDMS database file

IMBSWORK Dataset name of sample CA-IDMS database file

imbs.srclib Dataset name of CA-IDMS/DBOMP Transparency
source library if a source library was allocated in
optional ALLOC step of INSTALL procedure; or
dataset name of CA-IDMS source library if
CA-IDMS/DBOMP Transparency source library was
not allocated

idms.maclib Dataset name of CA-IDMS macro library

nnnnnn Volume serial number of disk where data dictionary
and sample CA-IDMS database files are stored

idms.sysctl Dataset name of IDMS SYSCTL file for running CV

cvdmcl Name of the DMCL that IDMS uses, for CV or local

dcmsg The ddname or IDMS message area

idms.ddldcmsg Dataset name of the IDMS message area, for CV and
local jobs

ddldd The ddname of the IDMS dictionary

idms.sysddl Dataset name of the IDMS dictionary

appldict Dictionary to be used

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 D-7

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

D.1.3 Explanation of EXEC statements in IMBSMJ02 procedure

The IMBSMJ02 procedure uses the eight EXEC statements described in the following
table.

Note: You must modify the parameters in the EXEC IMBSMJ02 statement (the last
EXEC statement in the procedure) to suit your installation requirements. For
more information, see D.1.4, “Customizing IMBSMJ02.”

EXEC statement What happens

ASMCBDG Assembles IMBSTAB

LINKCBDG Link edits IMBSTAB

ASMCOBL Assembles IMBSCOBL interface

LINKCOBL Link edits IMBSCOBL module

DMLC Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA-IDMS Data Manipulator Lan-
guage compiler

COB Compiles output from DMLC

LINKCOB Link edits IMBSDBMP

EXECPGM Executes the sample DBOMP application program,
IMBSDBMP, using the CA-IDMS/DBOMP Transpar-
ency bridge program IMBSBRDG

 D.1.4 Customizing IMBSMJ02

You must modify the defaults shown in the EXEC IMBSMJ02 statement (the last JCL
statement) in the IMBSMJ02 procedure. The following JCL shows the exec
IMBSMJ02. Change the items shown in italics to suit your installation requirements.
IMBSMJ02 (OS/390)

//SAMPLE EXEC IMBSMJI2

// PRT='SYSOUT=A',

// UNIT=disk,

// LIB='imbs.loadlib',

// IDMSLIB='idms.loadlib',

// IDMSSRC='idms.maclib',

// COBLIB='coblib',

// COBSTEP='cob.steplib',

// BASE='data.direct',

// IMBSBILL='imbsI13',

// IMBSWORK='IMBSWORK',

// SRCLIB='imbs.srclib',

D-8 CA-IDMS DBOMP Transparency

D.1 Customizing and executing IMBSMJ01 and IMBSMJ02

Parameter Description

disk Symbolic device name for data dictionary and database
files

imbs.loadlib Dataset name of CA-IDMS/DBOMP Transparency load
library if a load library was allocated in optional
ALLOC step of INSTALL procedure; or dataset name
of CA-IDMS load library if CA-IDMS/DBOMP Trans-
parency load library was not allocated

idms.loadlib Dataset name of CA-IDMS load library

idms.maclib Dataset name of CA-IDMS macro library

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sample or
user directory

IMBSBILL Dataset name of sample CA-IDMS database file

IMBSWORK Dataset name of sample CA-IDMS database file

imbs.srclib Dataset name of CA-IDMS/DBOMP Transparency
source library if a source library was allocated in
optional ALLOC step of INSTALL procedure; or
dataset name of CA-IDMS source library if
CA-IDMS/DBOMP Transparency source library was
not allocated

D.1.5 Executing IMBSMJ01 and IMBSMJ02

After you tailor the IMBSMJ01 and IMBSMJ02 procedures to your installation
requirements, you can submit them together as a job.

Appendix D. Setting Up CA-IDMS/DBOMP Transparency under OS/390 D-9

D-10 CA-IDMS DBOMP Transparency

Appendix E. Setting Up CA-IDMS/DBOMP
Transparency under VSE/ESA

E.1 Customizing and executing IMBSVJ01 and IMBSVJ02 E-3
E.1.1 Explanation of EXEC statements in IMBSVJ01 procedure E-3
E.1.2 Explanation of EXEC statements in IMBSVJ02 procedure E-4

E.2 Running IMBSVJ01 . E-6
E.3 Running IMBSVJ02 . E-7

Appendix E. Setting Up CA-IDMS/DBOMP Transparency under VSE/ESA E-1

E-2 CA-IDMS DBOMP Transparency

E.1 Customizing and executing IMBSVJ01 and IMBSVJ02

E.1 Customizing and executing IMBSVJ01 and IMBSVJ02

The JCL is shown in the IMBSVJ01 and IMBSVJ02 procedures as they exist in the
source library.

Source library member IMBSVJ01 contains a procedure that compiles the schema,
DMCL, and subschema for the sample database. It then initializes the database and
runs the sample DML program, IMBSBILL.

Member IMBSVJ02 compiles a sample DBOMP program, IMBSDBMP, and the com-
ponents needed to run it through CA-IDM/DBOMP Transparency, which uses the
same database as was set up by IMBSVJ01.

E.1.1 Explanation of EXEC statements in IMBSVJ01 procedure

The IMBSVJ01 procedure uses the EXEC statements described in the following table.

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Compiles the sample and punches DMCL module,
IMBSDMCL

LNKEDT Link edits sample DMCL module, IMBSDMCL

IDMSUBSC Compiles the sample and punches subschema,
IMBSSUBS

ASSEMBLY Assembles IMBSSUBS

LNKEDT Link edits IMBSSUBS

IDMSDMLC Submits the sample COBOL program, IMBSBILL, to
the CA-IDMS Data Manipulation Language compiler

FCOBOL Submits IMBSBILL to the COBOL compiler

LNKEDT Link edits IMBSBILL

IDMSRPTS Prints all dictionary/directory reports

IDMSBCF Initializes the sample database

IMBSBILL Executes the sample program, IMBSBILL

Appendix E. Setting Up CA-IDMS/DBOMP Transparency under VSE/ESA E-3

E.1 Customizing and executing IMBSVJ01 and IMBSVJ02

E.1.2 Explanation of EXEC statements in IMBSVJ02 procedure

The IMBSVJ02 procedure uses the eight EXEC statements described in the following
table.

Modules placed in the relocatable library: The following table lists the
modules placed in the relocatable library during installation.

Modules placed in the source statement library: The following table lists the
modules placed in the source statement library during installation.

EXEC statement What happens

ASSEMBLY Assembles the IMBS customizing macro

MAINT Catalogs IMBSTAB to relocatable library

ASSEMBLY Assembles the IMBSCOBL macro

MAINT Catalogs assembled IMBSCOBL to relocatable library

IDMSDMLC Submits the sample COBOL DBOMP program,
IMBSDBMP, to the Data Manipulation Language com-
piler

FCOBOL Submits IMBSDBMP to the COBOL compiler

LNKEDT Link edits IMBSDBMP

DEMOPROG Executes the sample DBOMP program, IMBSDBMP,
against CA-IDMS/DBOMP Transparency

Module Description

IMBSBRDG Bridge program

IMBSPROC Database procedure

E-4 CA-IDMS DBOMP Transparency

E.1 Customizing and executing IMBSVJ01 and IMBSVJ02

Module Description

IMBS Customizing macro

IMBSASMB Interface module (Assembler)

IMBSBILL Sample CA-IDMS/DB COBOL manufacturing applica-
tion program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL CA-IDMS/DBOMP Transparency COBOL interface
macro (Assembler)

IMBSDBMP Sample COBOL DBOMP program to be bridged

IMBSDMCL Sample DMCL description module

IMBSEQ Interface module (Assembler)

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA-IDMS/DBOMP Transparency interface macro (PL/1)

IMBSPROC Source code for database procedure object module

IMBSSCHM Sample CA-IDMS/DB schema description

IMBSSUBS Sample CA-IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

Appendix E. Setting Up CA-IDMS/DBOMP Transparency under VSE/ESA E-5

E.2 Running IMBSVJ01

 E.2 Running IMBSVJ01

Run IMBSVJ01, which executes a CA-IDMS/DB manufacturing application, using test
data provided on the installation tape and catalogued in the source statement library.

E-6 CA-IDMS DBOMP Transparency

E.3 Running IMBSVJ02

 E.3 Running IMBSVJ02

Run IMBSVJ02, which executes a DBOMP program with the CA-IDMS/DBOMP
Transparency bridge, using test data provided on the installation tape and catalogued in
the source statement library.

The JCL in IMBSVJ01 and IMBSVJ02 must first be edited so that the dataset names
are correct for your site.

Appendix E. Setting Up CA-IDMS/DBOMP Transparency under VSE/ESA E-7

E.3 Running IMBSVJ02

E-8 CA-IDMS DBOMP Transparency

 Index

Special Characters
@ACCEPT

See CA-IDMS DML statements, in bridged programs
@BIND PROC

See CA-IDMS DML statements, in bridged programs
@COMMIT

See CA-IDMS DML statements, in bridged programs
@ROLLBAK

See CA-IDMS DML statements, in bridged programs

A
assembling and linking A-6, B-7

COBOL A-7
IMBSCOBL B-7
IMBSPL1 A-6

B
BM$DS

See DBOMP macros
BM$WA

See DBOMP macros

C
CA-IDMS DML statements, in bridged

programs 2-9—2-13
@ACCEPT 2-9
@BIND PROC 2-9
@COMMIT 2-9
@ROLLBAK 2-9
arguments, building 2-11
arguments, table of 2-11

CA-IDMS/DB, system conversion to, 3-29, 4-16
CA-IDMS/DB Communications Block, 4-7
data conversion 4-3
DBOMP commands, with equivalent CA-IDMS/DB

DML statements, 4-12

CA-IDMS/DB, system conversion to, (continued)
DBOMP load and maintenance program

conversion, 4-15
DBOMP process indicators, with equivalent

CA-IDMS/DB DML statements 4-8
retrieval and update program conversion, 4-15

CA-IDMS/DBOMP Transparency, using, 5-3, 5-12
DBOMP Assembler program, executing, 5-4
DBOMP Assembler program, preparing, 5-3
debugging process, values 5-12
debugging techniques, 5-11
errors, diagnosing in bridged programs, 5-10
JCL, 5-5

CA$LL
See DBOMP macros

CDIR
See DBOMP process indicators

CHA$E
See DBOMP macros

CLOS
See DBOMP process indicators

CMPR
See DBOMP process indicators control statement
See IMBS, user-coded customizing macro control table
See IMBSTAB customized bridge module

CRDR
See DBOMP process indicators

CUPD
See DBOMP process indicators

D
data description guidelines, 1-6
DBOMP chain files, storing, 1-7

VIA, 1-7
DBOMP macros 2-3—2-6

CA$LL 2-4
CHA$E 2-4
GE$T 2-4
PU$T 2-4

Index X-1

DBOMP macros (continued)
requiring program modification and reassembly, 2-4
ST$KY 2-4
supported unconditionally by the transparency 2-4

DBOMP macros,
BM$DS 2-6
BM$WA 2-6
EQ$RG 2-6
MGS 2-6
MO$VE 2-6
not supported by the transparency 2-5
processed independently of the transparency 2-5
TY$PE 2-6

DBOMP master file, storing, 1-7
CALC, 1-7
DIRECT, 1-7

DBOMP process indicators 2-6, 2-8
CDIR 2-7
CLOS 2-8
CMPR 2-6
CRDR 2-7
CUPD 2-7
EXPN 2-7
MDIR 2-7
MRAN 2-7
MRDR 2-7
MRKY 2-7
MUPD 2-7
not supported by the transparency 2-8
OPEN 2-7
supported by the transparency 2-7, 2-8

delimiter statement
See IMBS, user-coded customizing macro

E
EQ$RG

See DBOMP macros
EXPN

See DBOMP process indicators

G
GE$T

See DBOMP macros

I
IDMS Communications Block

See IDMS, system conversion to

IMBS, user-coded customizing macro 2-13
IMBS, user-coded customizing macro, 1-6, 3-3, 3-13

control statement 3-4
delimiter statement, 3-8
file/record type description statement, 3-7
IMBS input statements 3-4
IMBSTAB, error messages 3-12
MNOTES, IMBSTAB 3-12
pointer/set relationship statement, 3-8
set identification statement, 3-6

IMBSBRDG program module, 1-5, 1-6, 3-20, 3-27
command conversion, 3-21
error bytes field values, 3-26
moving data, 3-24
record conversion, 3-23
retrieval processing, 1-5
routines, summary of, 3-21
update processing, 1-5
values, returned to the calling program, 3-26
work area prefix, updating, 3-26

IMBSEQ macro,
See also syntax
sequential file table, 3-29

IMBSMJ02 procedure
See OS/390 Setting Up

IMBSPROC database procedure, 3-18
dummy record, CA-IDMS/DB, 3-19
integration into bridge program, 3-19

IMBSTAB, customized bridge module 3-8
assembly and linkage, 3-11

IMBSTAB, customized bridge module, 1-6, 3-13, 5-5,
5-10

JCL, 5-5
INSTALL procedure D-4
installation 1-8

M
MDIR

See DBOMP process indicators
MNOTES, CA-IDMS/DBOMP Transparency

See IMBS, user-coded customizing macro
MO$VE

See DBOMP macros
MRAN

See DBOMP process indicators
MRDR

See DBOMP process indicators
MRKY

See DBOMP process indicators

X-2 CA-IDMS DBOMP Transparency

MSG
See DBOMP macros

MUPD
See DBOMP process indicators

O
OPEN

See DBOMP process indicators
OS/390 Setting Up D-3, D-9

IMBSMJ01 procedure D-4
IMBSMJ02 procedure D-4
load modules, in CA-IDMS/DB load library D-3
modifications, in IMBSMJ01 procedure, D-6
modifications, in IMBSMJ02 procedure, D-8
object modules, in CA-IDMS/DB or object

library D-3
Setting Up procedure, D-3
source modules, in CA-IDMS/DB source library D-3

P
pointer table

See IMBSTAB customized bridge module
pointer/set relationship statement

See IMBS, user-coded customizing macro
programming considerations 5-12

PL/I, 5-12
programming restrictions 1-7, 1-8

Assembler macros 1-8
prototype bill-of-materials application, C-3, C-5

IMBSBILL, logic flow C-5
sample program, logic flow C-5

PU$T
See DBOMP macros

R
RACN

See Run Activity Control Number
Run Activity Control Number 2-3, 2-9, 4-3

S
sequential file table

See IMBSEQ macro
set identification statement,

See IMBS, user-coded customizing macro
set table

See IMBSTAB, customized bridge module
special routines, DBOMP 2-8

ST$DA
See DBOMP macros

ST$KY
See DBOMP macros

syntax,
IMBS macro control statement, 3-4
IMBS macro delimiter statement, 3-8
IMBS macro file/record type description

statement, 3-7
IMBS macro pointer/set relationship statement, 3-8
IMBS macro set identification statement, 3-6
IMBSEQ macro, 3-27

T
TY$PE

See DBOMP macros

V
VSE/ESA Setting Up E-7
VSE/ESA Setting Up, E-3

IMBSVJ01, E-5
IMBSVJ02, E-6
modules, in relocatable library, E-4
modules, in source statement library, E-4

Index X-3

	CA-IDMS DBOMP Transparency
	Contents
	How to use this Manual
	What this manual is about
	Who should use this manual
	How information is presented
	Related CA- IDMS documentation

	Chapter 1. Introduction to the CA- IDMS/ DBOMP Transparency
	1.1 Functions and modules
	1.1.1 Functions
	1.1.2 Modules

	1.2 Data description guidelines
	1.3 Programming requirements
	1.4 Installation

	Chapter 2. The Transparency Environment
	2.1 Overview
	2.2 DBOMP macros supported
	2.2.1 Macros supported unconditionally
	2.2.2 Macros that require program modification and reassembly
	2.2.3 Macros not supported
	2.2.4 Macros processed independently of the transparency

	2.3 DBOMP process indicators supported
	2.3.1 Process indicators fully supported
	2.3.2 Process indicators supported with exceptions
	2.3.3 Process indicators not supported

	2.4 DBOMP routines supported
	2.5 CA- IDMS DML statements supported in bridged programs
	2.6 How to include CA- IDMS DML statements

	Chapter 3. Transparency Programs and Macros
	3.1 IMBS customizing macro
	3.1.1 Control statement
	3.1.2 Set identification statement
	3.1.3 File/ record type description statement
	3.1.4 Pointer/ set relationship statement
	3.1.5 Delimiter statement

	3.2 Output from IMBS macro - IMBSTAB
	3.2.1 IMBSTAB error messages

	3.3 Sample IMBS and IMBSTAB
	3.4 IMBSPROC database procedure
	3.5 IMBSBRDG program module
	3.5.1 Converting DBOMP calls to CA- IDMS/ DB statements
	3.5.2 Converting records retrieved from CA- IDMS/ DB

	3.6 IMBSEQ macro

	Chapter 4. Converting DBOMP to CA- IDMS/ DB
	4.1 Converting data
	4.2 Converting DBOMP load and maintenance programs
	4.2.1 DBOMP process indicators and corresponding DML
	4.2.2 DBOMP commands and corresponding DML
	4.2.3 Sequence of logic in converted programs

	4.3 Converting DBOMP retrieval and update programs
	4.4 DBOMP error codes that have CA- IDMS/ DB equivalents

	Chapter 5. Using the Transparency as a Bridge to CA- IDMS/ DB
	5.1 Preparing DBOMP Assembler programs
	5.2 Executing DBOMP Assembler programs
	5.2.1 Assembling and executing under OS/ 390
	5.2.2 Assembling and executing under VSE/ ESA

	5.3 Diagnosing errors
	5.3.1 What to look for when errors occur during program processing
	5.3.2 What to look for when inaccurate data is returned
	5.3.3 Where to find values during debugging

	Appendix A. PL/ I Considerations
	A. 1 Transparency support for DBOMP PL/ I commands
	A. 2 IMBSPL1 interface macro
	A. 3 DBOMP PL/ I program preparation and execution

	Appendix B. COBOL Considerations
	B. 1 Transparency support for DBOMP COBOL commands
	B. 2 IMBSCOBL interface macro
	B. 3 DBOMP COBOL program preparation and execution

	Appendix C. Sample Application and Procedures
	C. 1 IMBSBILL sample application
	C. 2 IMBSMJ01 sample OS/ 390 JCL
	C. 3 IMBSMJ02 sample OS/ 390 JCL

	Appendix D. Setting Up CA- IDMS/ DBOMP Transparency under OS/ 390
	D. 1 Customizing and executing IMBSMJ01 and IMBSMJ02
	D. 1.1 Explanation of EXEC statements in IMBSMJ01 procedure
	D. 1.2 Customizing IMBSMJ01
	D. 1.3 Explanation of EXEC statements in IMBSMJ02 procedure
	D. 1.4 Customizing IMBSMJ02
	D. 1.5 Executing IMBSMJ01 and IMBSMJ02

	Appendix E. Setting Up CA- IDMS/ DBOMP Transparency under VSE/ ESA
	E. 1 Customizing and executing IMBSVJ01 and IMBSVJ02
	E. 1.1 Explanation of EXEC statements in IMBSVJ01 procedure
	E. 1.2 Explanation of EXEC statements in IMBSVJ02 procedure

	E. 2 Running IMBSVJ01
	E. 3 Running IMBSVJ02

	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	I
	M
	O
	P
	R
	S
	T
	V

